

Опоры ВЛ 110-500 кВ из высокопрочной и атмосферостойкой сталей уголкового и квадратного профилей

Выставка «Крым. Стройиндустрия. Энергосбережение. Весна-2020» 12-14 марта 2020, г. Симферополь

Бондарева Елизавета Олеговна,

инженер НИЛКЭС
OOO «ПО «Энергожелезобетонинвест»
e.o.bondareva@nilkes.ru
www.nilkes.ru

Металлургическая промышленность освоила производство сталей повышенной прочности

Уголок из стали повышенной прочности C390 на 7% дороже обычной стали, но с учётом механических характеристик

позволяет снизить металлоемкость решётчатых опор ВЛ

Появились новые для энергетического строительства продукты:

фасон квадратного и прямоугольного сечения,

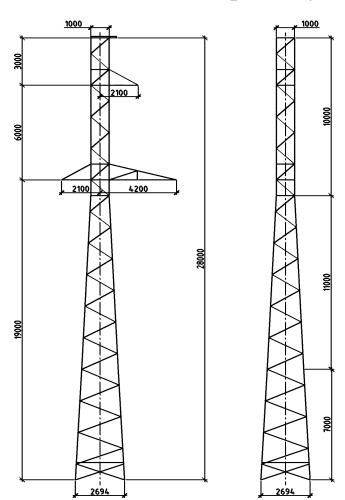
отличающиеся большей жесткостью при работе на сжатие

Атмосферостойкая сталь 14ХГНДЦ

на 15% дороже обычной стали, но позволяет сделать решётчатые опоры необслуживаемыми –

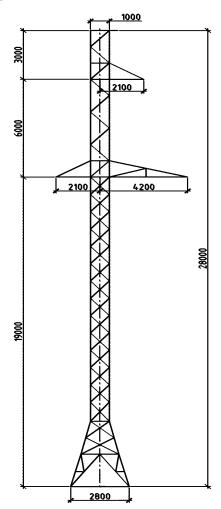
отсутствует необходимость в покраске и оцинковке

Новые свойства материала требуют поиска новых схем опор



Разработка опор ВЛ 110 кВ из высокопрочной и атмосферостойкой сталей уголкового профиля

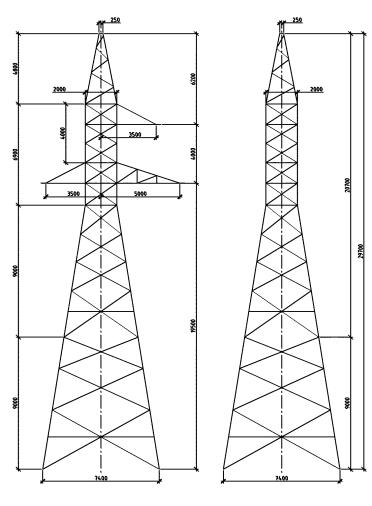
- 1. Расчёт типовых опор на соответствие требованиям ПУЭ-7 (изначально рассчитанных на ПУЭ-5 и ПУЭ-6)
 - * из стали Ст3
 - * из стали С245
 - * из сталей повышенной прочности С390 (С440)
- 2. Оптимизация геометрии опор для минимизации массы конструкции при использовании высокопрочной стали
 - * расчеты модернизированных опор из стали C390 (4 варианта геометрических схем)
- 3. Технико-экономическое сравнение вариантов
 - * модернизированных опор с типовыми конструкциями




Промежуточные опоры ВЛ 110 кВ

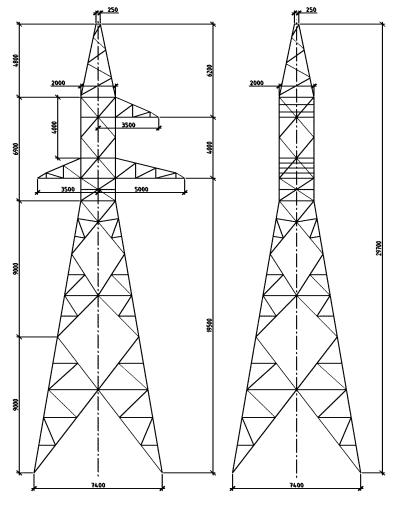
П110-5В

типовая, инв № 11520тм-т.1



П110-5ВМ

с модернизированной решёткой



Анкерно-угловые опоры ВЛ 110 кВ

У110-1+9

типовая, инв № 3078тм-т.10

У110-1+9М

с модернизированной решёткой

Сравнительный анализ опор П110-5В и П110-5ВМ

Maj	ока опоры		П110-5В		П110	-5BM	
Hop	омы для расчёта	ПУЭ-5 (6)	по д	ействующим	нормам – ПУЭ-7		
Геометрия решётки		типовая			модерниз	ированная	
Сталь		Ст3	C245	C390	C390	атмосферо- стойкая С345	
Macca	стальные уголки, кг	2187	2003	1939	1718	1773	
Ma	изменение массы, %	-	-8,4%	-11,3%	-21,4%	-18,9%	
	стальных уголков	109	100	104	92	102	
Стоимость, тыс. руб.	изготовления металлоконструкций	44	40	39	34	36	
Стои	горячей оцинковки	52	47	46	40	не требуется	
	итоговая	204	187	188	167	137	
Изм	енение стоимости, тыс.руб.	-	-17	-16	-38	-67	
Изм	пенение стоимости, %	-	-8,4%	-8%	-18,5%	-32,8%	

Сравнительный анализ опор У110-1+9 и У110-1+9М

Mar	ока опоры	7	Y110-1+9	9	У110-	1+9 M	
Hop	мы для расчёта	ПУЭ-5 (6)	по д	ействующим	нормам – ПУЭ-7		
Геом	Геометрия решётки		типовая		модерниз	ированная	
Сталь		Ст3	C245	C390	C390	атмосферо- стойкая С345	
Macca	стальные уголки, кг	6844	5759	5529	4530	4675	
Ma	изменение массы, %	-	-15,8%	-19,2%	-33,8%	-31,7%	
	стальных уголков	342	288	296	242	269	
Стоимость, тыс. руб.	изготовления металлоконструкций	137	115	111	91	94	
Стои	горячей оцинковки	161	135	130	106	не требуется	
	итоговая	640	539	537	440	362	
Изм	Изменение стоимости, тыс.руб.		-101	-103	-200	-278	
Изм	Изменение стоимости, %		-15,8%	-16,2%	-31,3%	-43,4%	

Экономический эффект от использования модернизированных опор 110 кВ

Нормы дл	я расчёта	ПУЭ-5 (6)	П	ю действующи	м нормам – ПУЗ) -7	
Геометрия	я решётки		типовая		модернизированная		
b py6.	Сталь	Ст3	C245	C390	C390	атмосферо- стойкая С345	
OCT	для анкерной опоры	639,9	538,5	536,6	439,4	362,3	
С ТОИМОСТЬ из уголков, тыс. р	для промежуточной опоры	204,5	187,4	188,1	166,7	137,4	
СТОИМОСТЬ МК из уголков, тыс. руб.	на анкерный участок (1,63 км)	1457,9	1288,1	1289	1106,2	911,9	
Σ	на 1 км ВЛ	894,4	790,2	790,8	678,7	559,4	
ИЯ ли юрами	на 1 км ВЛ, тыс. руб.	-	104	104	216	335	
ЭКОНОМИЯ в сравнении типовыми опорами	на 1 км ВЛ, %	-	11,6%	11,6%	24,1%	37,5%	
Э КС в сј	на объектах ПАО «Россети» (1160 км/год), тыс. руб.	-	121 000	120 000	250 000	389 000	

Технико-экономическое обоснование разработки новых опор ВЛ 110 кВ из уголкового профиля

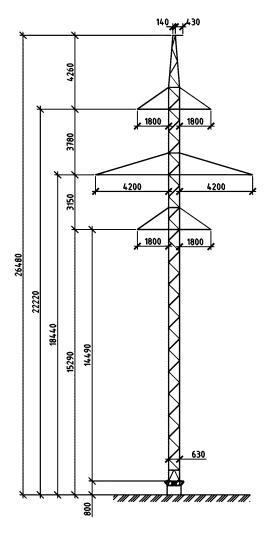
- 1. Модифицированные опоры из стали С390 легче типовых опор **на 21-34%**. За счёт этого их стоимость ниже **на 19-31%**
- 2. Модифицированные опоры из атмосферостойкой стали С345 (14ХГНДЦ) легче типовых опор на 19-32%, при этом отсутствуют затраты на горячее цинкование. За счёт этого их стоимость ниже на 33-43%
- 3. Применение модернизированных опор на строящихся ВЛ 110 кВ позволяет экономить до 37,5% (до 335 тыс. руб. на 1 км ВЛ)
- 4. Годовой экономический эффект от применения модернизированных опор на объектах ПАО «Россети» (1160 км/год) может составлять 389 млн рублей

Стали С345 и С390 имеют сопоставимый эффект по изменению массы, поэтому унифицированную серию опор ВЛ целесообразно разрабатывать из стали С345 в ощинкованном или атмосферостойком исполнении

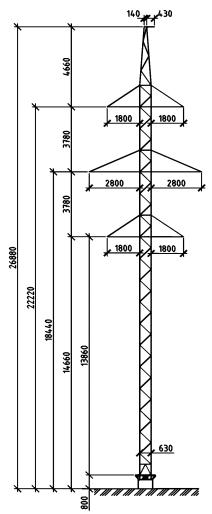
Разработка опор ВЛ 110 кВ из высокопрочной и атмосферостойкой стали **квадратного профиля**

- 1. Выбор инновационных типов проводов (высокопрочных / высокотемпературных), сопоставимых по пропускной способности с типовым проводом AC240/32 Расчеты длительно допускаемых токов по СТО 56947007-29.240.55.143-2013
- **2. Эскизная разработка двух линеек промежуточных и анкерных двухцепных опор** на условия: ветер 2й район, гололед 3й район.
 - * для проводов «обычной» прочности

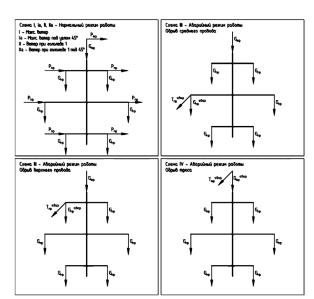
AC240/32, ACку 240/32, ACT 185/29 – опоры П110-2С и У110-2С


* - для высокопрочных проводов

АСВП 258/74 II, АСВТ 190/55 II – опоры П110-4С и У110-4С

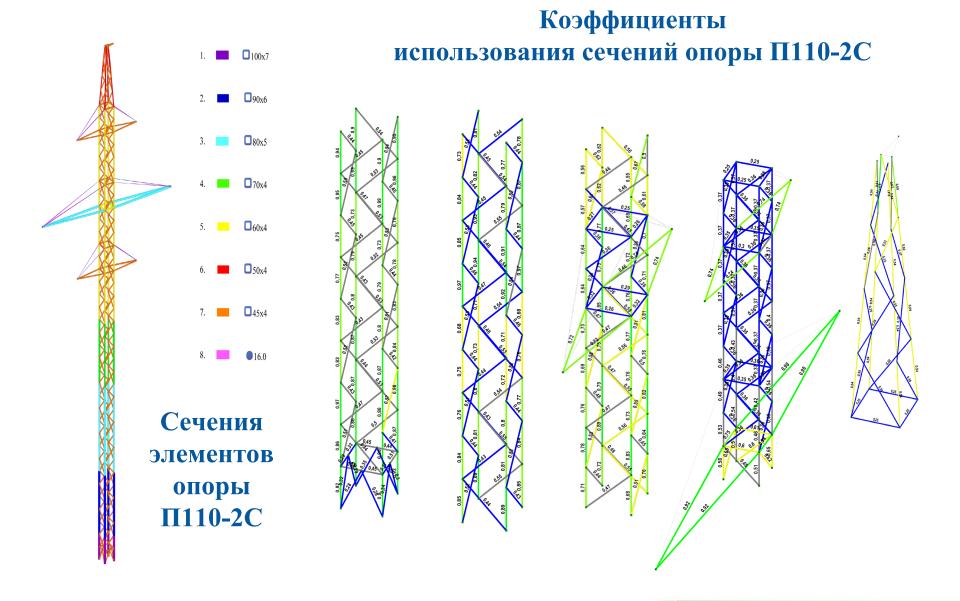

- 3. Выбор оптимальной геометрии опор для минимизации массы металла на 1 км ВЛ: для разных вариантов высоты подвески выбранных типов проводов определены пролеты, собраны нагрузки, определены усилия, вычислена масса опор
- **4. Технико-экономическое сравнение** новых опор с решетчатыми и многогранными типовыми конструкциями

Промежуточные опоры ВЛ 110 кВ


П110-2С

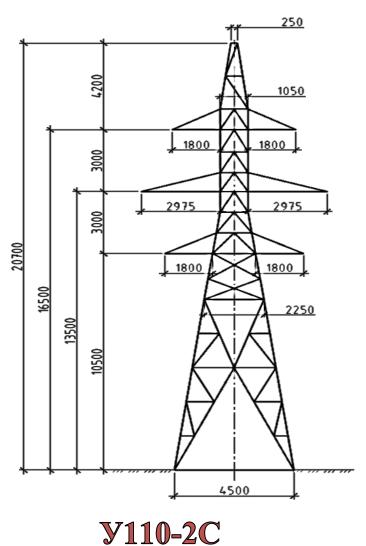
П110-4С для высокопрочных проводов

Схема приложения нагрузок

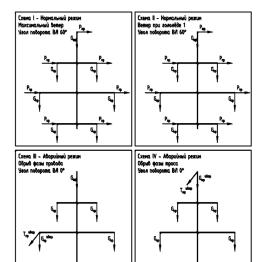

Ветровая нагрузка

	Результирующие данные для ввода в расчетные комплексы							
Наименование секции опоры П110-2C	Сила в узле при максимальном ветре, при направлении ветра к оси ВЛ, кг 0° 90° 45°				Сила в узле при гололёде, при направлении ветра к оси ВЛ, кг			
	Ko.	0°	90°	45°	0°	90°	45°	
1 секция	44	6,2	6,2	7,4	1,5	1,5	1,8	
2 секция	36	7,4	7,4	8,8	1,8	1,8	2,2	
3 секция	36	7,2	7,2	8,7	1,8	1,8	2,2	
4 секция	36	9,0	9,0	10,8	2,3	2,3	2,7	
Траверса нижняя 1,8 м	1	28,7	12,9	15,5	7,2	3,2	3,9	
Траверса средняя 4,2 м	1	28,3	12,8	15,3	7,1	3,2	3,8	
Траверса верхняя 1,8 м	1	36,2	16,3	19,6	9,1	4,1	4,9	
Тросостойка	17	7,5	7,5	1,9	1,9	2,3		

Нагрузки от проводов и грозотроса


			П110-2С		П110)-4C
Схема	Параметр		M	[арка пров	ода	
загружения	Параметр	AC 240/32	АСку 240/32	ACT 185/29	АСВП 258/74	ACBT 190/55
Схема І	P_{np}	332	362	318	440	385
Максима-	G_{np}	339	368	279	614	436
льный	P_{Tp}	180	201	181	237	221
ветер	G_{rp}	185	207	187	242	226
Схема Іа	P_{np}	176	191	169	230	202
Максима- льный	G_{np}	339	368	279	614	436
ветер под	$P_{\tau p}$	91	102	92	120	112
углом 45°	G_{rp}	163	207	187	242	226
	P_{np}	328	354	316	443	391
Схема II Ветер при	G_{np}	1865	1987	1715	2629	2172
гололеде	$P_{\tau p}$	326	365	328	431	401
	G_{rp}	1241	1391	1251	1642	1527
Схема IIa	P_{np}	164	177	158	222	196
Ветер при	G_{np}	1865	1987	1715	2629	2172
гололеде	$P_{\tau p}$	163	183	165	216	201
под 45°	G_{rp}	1241	1391	1251	1642	1527
	T_{np}^{abap}	1089	1299	1188	2287	1707
Схема III Обрыв	G_{np}^{abap}	191	205	160	328	239
провода	G_{np}	339	368	279	614	436
	G_{rp}	185	207	187	242	226
Схема IV	G_{np}	339	368	279	614	436
Обрыв	$T_{\rm rp}^{\ \ a a a a p}$	1498	1498	1498	1498	1498
троса	$G_{\scriptscriptstyle Tp}^{\ \ abap}$	97	108	98	126	118

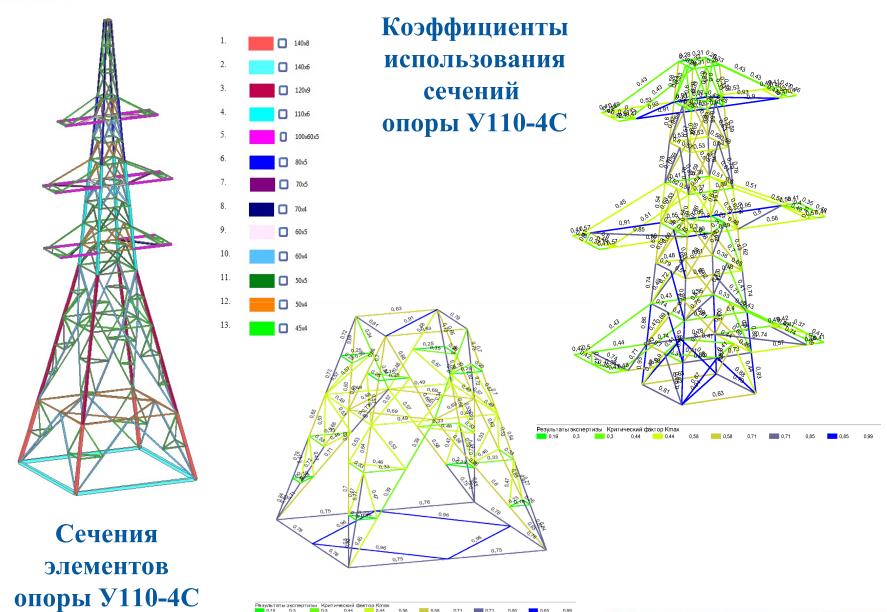
Анкерно-угловые опоры ВЛ 110 кВ



У110-4С для высокопрочных проводов

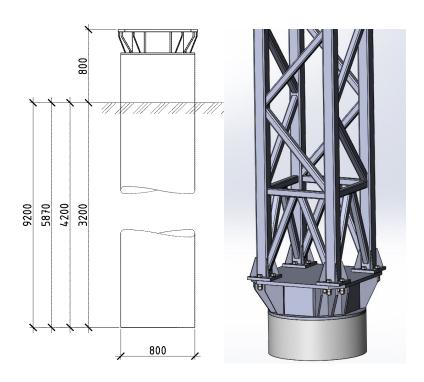
Расчёт анкерно-угловых опор

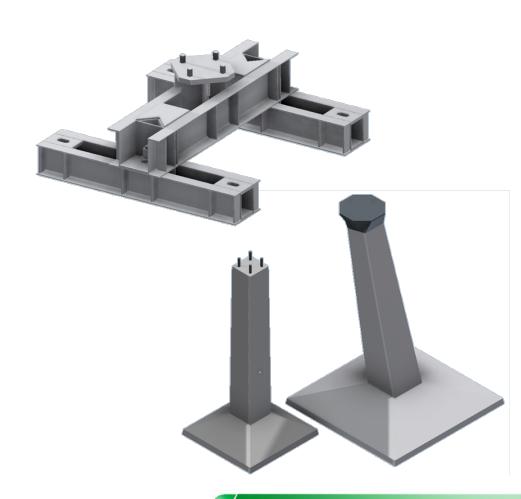
Схема приложения нагрузок

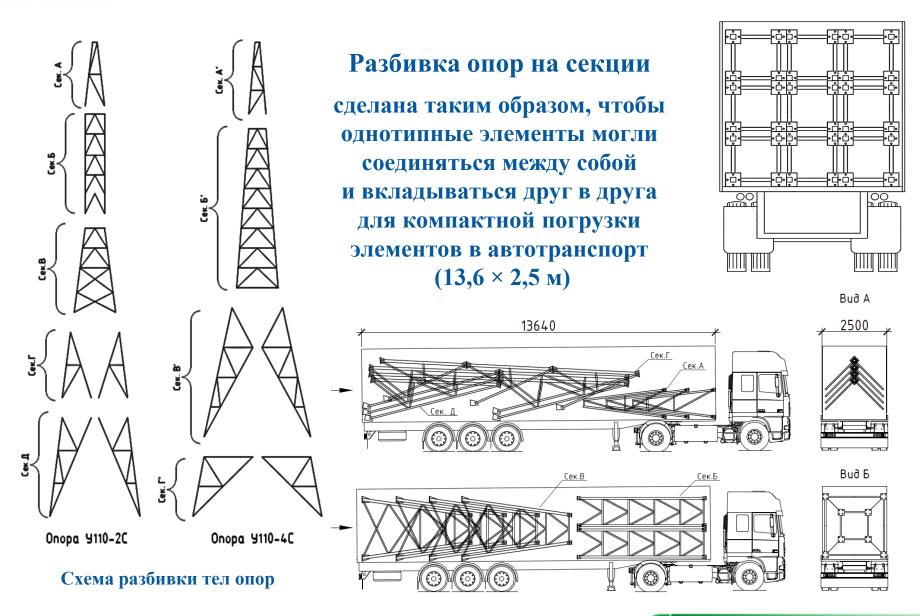

Ветровая нагрузка

	Резул	Результирующие данные для ввода в расчетные комплексы								
Наименование секции опоры У110-4С	Количество узлов	мак в напра	а в узле ссималы етре, пр влении оси ВЛ,	ном ветра	Сила в узле при гололёде, при направлении ветра к оси ВЛ, кг					
	Ko	0°	90°	45°	0°	90°	45°			
1 секция	24	22,1	22,1	26,5	5,5	5,5	6,6			
2 секция	44	20,2	20,2	24,3	5,1	5,1	11,1			
3 секция	68	9,9	9,9	11,9	2,5	2,5	8,4			
Траверса нижняя	2	27,8	12,5	33,3	6,9	3,1	0,7			
Траверса средняя	2	35,7	16,0	42,8	8,9	4,0	0,9			
Траверса верхняя	2	30,2	13,6	36,2	7,5	3,4	0,8			
Тросостойка	13	15,1	15,1	18,1	3,8	3,8	2,5			

Нагрузки от проводов и грозотроса


			У110-2С		У11	0-4C
Схема	Папаметп		N	Ларка провод	ıa	
загружения	Схема вагружения Параметр Марка провода АС 240/32 Аску 240/32 АСТ 185/29 258/74 Схема I Максимальный ветер ный ветер ногологеде Р пр 2416 3059 2272 6453 Схема I Максимальный ветер ногологеде Р пр 2158 1987 2158 3074 Схема II Ветер при гололеде Р пр 4645 5490 4220 9509 Схема II Ветер при гололеде 2173 2296 2010 2936 Схема III Обрыв провода Т пр авар 4203 5000 3785 8932 Схема III Обрыв провода С пр 2173 2296 2010 2936 Схема IV Обрыв тросса С пр 2173 2296 2010 2936 Схема IV Обрыв тросса С пр 2173 2296 2010 2936 Схема IV Обрыв тросса С пр 2173 2296 2010 2936 С пр 442 717 642 842	ACBT 190/55				
	P_{np}	2416	3059	2272	6453	4598
Максималь-	G_{np}	548	576	486	822	642
	Ртр	2158	1987	2158	3074	3263
	G_{Tp}	194	215	194	251	223
	P _{np}	4645	5490	4220	9509	7145
		2173	2296	2010	2936	2466
1 1		3987	4016	3987	5188	5164
		1255	1405	1255	1656	1531
		4203	5000	3785	8932	6619
	G_{np}^{abap}	1257	1319	1176	1639	1404
	G_{np}	2173	2296	2010	2936	2466
Максимальный ветер P_{Tp} 2158 198 G_{Tp} 194 21 P_{Tp} 4645 549 Схема II G_{Tp} 2173 229 $Bemep npu cononede$ P_{Tp} 3987 401 G_{Tp} 1255 140 G_{Tp} 1255 140 G_{Tp} 1257 131 G_{Tp} 1255 140 G_{Tp} 1255	1405	1255	1656	1531		
	G_{np}	2173	2296	2010	2936	2466
		3515	3494	3515	4598	4619
o op oor mp o ou	$G_{\scriptscriptstyle Tp}^{ a a a a p}$	642	717	642	842	779
	Р _{х пр}	2272	2701	2057	4754	3547
		1331	1580	1206	2768	2069
	G_{np}	308	322	277	445	355
	Р _{х тр}	1945	1945	1945	2529	2529
	$P_{y Tp}$	1137	1138	1137	1478	1476
	G_{rp}	97	108	97	125	117




Для промежуточных опор: свая-оболочка

Для анкерно-угловых опор: грибовидные подножники и свайные основания

Сравнительный анализ опор для проводов AC240/32, ACку 240/32, ACT 185/29

Тип	опоры	I	іромежуточны	e	анкерно	-угловые
Map	ка опоры	П110-4В	ПМ110-2Ф	П110-2С	У110-2	
Геом	етрия решётки	типовая	многогран.	новая	типовая	новая
Стал	ІЬ	C245	C345	14ХГНДЦ класс 345	C245	14ХГНДЦ класс 345
cca	сталь (в т.ч. метизы), кг	3191	2713	2233	7696	4415
Macca	изменение массы, %	143	121	100	174	100
Защ	ита от коррозии	цинк	цинк	не требуется	цинк	не требуется
Стои	імость, тыс. руб.	291,8	376,3	206,3	704,2	407,9
Измо	енение стоимости, тыс.руб.	+85,5	+170,0		+296,3	-
Изм	енение стоимости, %	141%	182%	100%	173%	100%

В расчётах принята следующая стоимость:

- 1. Труба профильная из атмосферостойкой стали С345 (14ХГНДЦ) –54,4 тыс. руб./т.
- 2. Изготовление металлоконструкций 38,0 тыс. руб./т.

Стоимости типовых опор приняты на основании анализа текущих цен на интернет-ресурсах

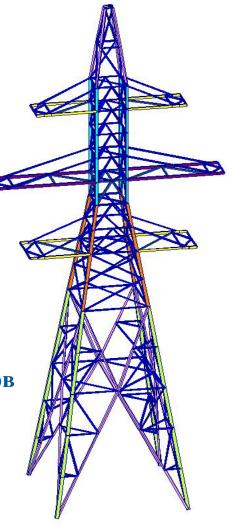
Сравнительный анализ опор для высокопрочных проводов АСВП 258/74 II, ACBT 190/55 II

Тип	опоры	I	промежуточны	e	анкерно	-угловые
Map	ка опоры	П110-4В	ПМ110-2Ф	П110-4С	У220-2	У110-4С
Геом	етрия решётки	тип	овая	новая	типовая новая	
Стал	ІЬ	C245	C345	14ХГНДЦ класс 345	C245	14ХГНДЦ класс 345
cca	сталь (в т.ч. метизы), кг	3191	2713	2325	14378	6251
Macca	изменение массы, %	137 116		100	230	100
Защ	ита от коррозии	цинк	цинк	не требуется	цинк	не требуется
Стои	имость, тыс. руб.	291,8	376,3	214,8	214,8 1318,3 57	
Изм	енение стоимости, тыс.руб.	+77,0	+161,5,5	_	+740,7	_
Изм	енение стоимости, %	136%	175%	100%	228%	100%

В расчётах принята следующая стоимость:

- 1. Труба профильная из атмосферостойкой стали СЗ45 (14ХГНДЦ) –54,4 тыс. руб./т.
- 2. Изготовление металлоконструкций 38,0 тыс. руб./т.

Стоимости типовых опор приняты на основании анализа текущих цен на интернет-ресурсах



Сравнение стоимости одного километра ВЛ для выбранных типов проводов

Для оценки стоимости 1 км ВЛ рассматривается анкерный участок, состоящий из одной анкерно-угловой опоры и пяти промежуточных

Для каждого типа провода:

- определены расчетные пролеты
- определены длины анкерных участков
- учтены затраты на монтаж опоры
- учтена стоимость линейной арматуры и проводов
- определены типы фундаментов
- учтена стоимость конструкции фундаментов
- учтена стоимость установки фундаментов

Сравнительный анализ стоимости участка ВЛ с проводом АС240/32

Тип опор	Решёт	чатые	Многог	ранные	Из профил	ьных труб
Марки опор	П110-4В	У110-2	ПМ110-2Ф	У110-2	П110-2С	У110-2С
Пролёт, м	295	240	295	240	245	215
Длина анкерного участка, м	17	15	17	15	14	40
Стоимость опоры, т.р.	291,8	704,2	376,3	704,2	206,3	407,9
Стоимость монтажа опоры, т.р.	52	125	6	125	6	52
Стоимость линейной арматуры, т.р.	63	150	63	150	63	150
Стоимость провода, т.р./км			150	6,4		
Тип фундамента	Ф4-2	Ф4-А	CO720.12-5	Ф4-А	СЦФ50.80.4-1	Ф4-А
Стоимость фундаментов, т. р.	138,2	244,0	166,0	244,0	83	244,0
Установка фундаментов, т.р.	42	63	21	63	21	63
Стоимость анкерного участка, т.р.	502	25,9	525	52,4	3489,0	
Стоимость 1 км ВЛ, т.р.	293	80,5	3062,6		2423,0	
Изменение стоимости 1 км ВЛ, т.р.	+ 50	07,6	+ 639,7 0,0		0	

Сравнительный анализ стоимости участка ВЛ с проводом АСку 240/32

Тип опор	Решёт	чатые	Многог	ранные	Из профил	ьных труб	
Марки опор	П110-4В	У110-2	ПМ110-2Ф	У110-2	П110-2С	У110-2С	
Пролёт, м	330	270	330	270	275	240	
Длина анкерного участка, м	19	20	19	20	16	15	
Стоимость опоры, т.р.	291,8	704,2	376,3	704,2	206,3	407,9	
Стоимость монтажа опоры, т.р.	52	125	6	125	6	52	
Стоимость линейной арматуры, т.р.	63	150	63	150	63	150	
Стоимость провода, т.р./км			203	3,1			
Тип фундамента	Ф4-2	Ф4-А	CO720.12-5	Ф4-А	СЦФ50.80.4-1	Ф4-А	
Стоимость фундаментов, т. р.	138,2	244,0	166,0	244,0	83	244,0	
Установка фундаментов, т.р.	42	63	21	63	21	63	
Стоимость анкерного участка, т.р.	539	1,1	561	7,6	379	7,4	
Стоимость 1 км ВЛ, т.р.	2807,8 2925,8		235	2351,3			
Изменение стоимости 1 км ВЛ, т.р.	+ 45	56,5	+ 57	74,5	0,	0,0	

Сравнительный анализ стоимости участка ВЛ с проводом АСТ 185/29

Тип опор	Решёт	чатые	Многог	ранные	Из профил	ьных труб
Марки опор	П110-4В	У110-2	ПМ110-2Ф	У110-2	П110-2С	У110-2С
Пролёт, м	285	255	285	255	245	215
Длина анкерного участка, м	16	80	16	80	14	40
Стоимость опоры, т.р.	291,8	704,2	376,3	704,2	206,3	407,9
Стоимость монтажа опоры, т.р.	52	125	6	125	6	52
Стоимость линейной арматуры, т.р.	63	150	63	150	63	150
Стоимость провода, т.р./км			20′	7,8		
Тип фундамента	Ф4-2	Ф4-А	CO720.12-5	Ф4-А	СЦФ50.80.4-1	Ф4-А
Стоимость фундаментов, т. р.	138,2	244,0	166,0	244,0	83	244,0
Установка фундаментов, т.р.	42	63	21	63	21	63
Стоимость анкерного участка, т.р.	5268,5		549	25,0	3711,1	
Стоимость 1 км ВЛ, т.р.	3136,0		3270,8		2577,2	
Изменение стоимости 1 км ВЛ, т.р.	+ 55	58,9	+ 69	93,7	0,	0

Сравнительный анализ стоимости участка ВЛ с проводом АСВП 258/74П

Тип опор	Решётчатые		Многогранные		Из профильных труб	
Марки опор	П110-4В	У220-2	ПМ110-2Ф	У220-2	П110-4С	У110-4С
Пролёт, м	320	320	320	320	325	295
Длина анкерного участка, м	1920		1920		1920	
Стоимость опоры, т.р.	291,8	1318,3	376,3	1318,3	214,8	577,6
Стоимость монтажа опоры, т.р.	52	234	6	234	6	74
Стоимость линейной арматуры, т.р.	63	150	63	150	63	150
Стоимость провода, т.р./км	250,0					
Тип фундамента	Ф4-2	Ф5А+2Р1-А	CO720.12-5	Ф5А+2Р1-А	СЦФ50.80.4-1	Ф5А+2Р1-А
Стоимость фундаментов, т. р.	138,2	355,2	166	355,2	83	355,2
Установка фундаментов, т.р.	42	79	21	79	21	79
Стоимость анкерного участка, т.р.	6511,5		6738,0		4614,8	
Стоимость 1 км ВЛ, т.р.	3391,4 3509,4 2403,5		03,5			
Изменение стоимости 1 км ВЛ, т.р.	+ 98	+ 987,9 + 1105,8		0,0		

Сравнительный анализ стоимости участка ВЛ с проводом ACBT 190/55 II

Тип опор	Решётчатые		Многогранные		Из профильных труб	
Марки опор	П110-4В	У220-2	ПМ110-2Ф	У220-2	П110-4С	У110-4С
Пролёт, м	340	310	340	310	300	275
Длина анкерного участка, м	2010		2010		1775	
Стоимость опоры, т.р.	291,8	1318,3	376,3	1318,3	214,8	577,6
Стоимость монтажа опоры, т.р.	52	234	6	234	6	74
Стоимость линейной арматуры, т.р.	63	150	63	150	63	150
Стоимость провода, т.р./км	197,2					
Тип фундамента	Ф4-2	Ф5-А+2Р1-А	CO720.12-5	Ф5-А+2Р1-А	СЦФ50.80.4-1	Ф5-А+2Р1-А
Стоимость фундаментов, т. р.	138,2	355,2	166	355,2	83	355,2
Установка фундаментов, т.р.	42	79	21	79	21	79
Стоимость анкерного участка, т.р.	626	50,6	6487,1		4224,9	
Стоимость 1 км ВЛ, т.р.	3114,7 3227,4 2380,2			80,2		
Изменение стоимости 1 км ВЛ, т.р.	+ 73	+ 734,5 + 847,2		0,	,0	

Стоимость строительства 1 км ВЛ 110 кВ

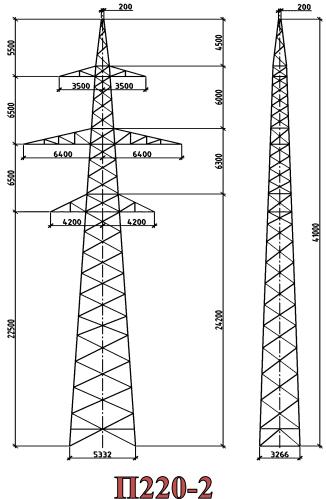
с использованием опор из квадратного профиля в зависимости от используемых проводов

Марка провода	Стоимость 1 км ВЛ, тыс.руб.	Разница в стоимости 1 км ВЛ, в %	
AC240/32	2423,0	+ 3,0%	
АСку 240/32	2351,3	_	
ACT 185/29	2577,2	+9,6%	
ACBII 258/74 II	2403,5	+2,2%	
ACBT 190/55 II	2380,2	+1,2%	

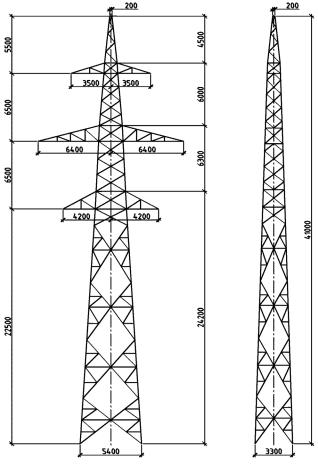
Результаты оптимизации опор ВЛ 110 кВ из квадратного профиля

- 1. Впервые разработан эскизный проект промежуточных и анкерных опор ВЛ 110 кВ из квадратного профиля в сварном варианте
- 2. Для расчетов опор выбраны инновационные провода, обладающие сопоставимой пропускной способностью с проводом AC240/32
- 3. Анкерные и промежуточные опоры разработаны для подвески двух линеек проводов: обычной и повышенной прочности
- 4. На основании серии расчетов нескольких вариантов схем опор в сочетании с выбранными проводами произведен выбор оптимальных шпренгельных конструкций, масса и стоимость которых на 1 км минимальна
- 5. Узкобазые промежуточные опоры устанавливаются на один трубчатый фундамент. Широкобазые анкерные на четыре фундамента
- 6. Размеры сварных секций обеспечивают возможность их компактной перевозки и быстрой сборки на пикете
- 7. Конструкции могут изготавливаться из обычной и атмосферостойкой стали класса прочности С345. Горячая оцинковка в случае использования стали 14ХГНДЦ не требуется

Технико-экономическое обоснование разработки новых опор ВЛ 110 кВ из квадратного профиля


(сравнение с опорами из уголкового и многогранного профиля)

- 1. Масса новых промежуточных опор сократилась в 1,2 1,4 раза
- 2. Масса новых анкерных опор сократилась в 1,7 2,3 раза
- 3. Стоимость 1 км ВЛ на новых опорах из атмосферостойкой стали для всех марок проводов сокращается в 1,24 1,46 раза
- 4. Стоимость 1 км ВЛ при использовании проводов обычной и повышенной прочности **сопоставима**
- 5. При строительстве каждого километра ВЛ 110 кВ будет достигнута экономия от 450 000 до 1 100 000 рублей в зависимости от используемого типа провода
- 6. В случае использования новых опор при строительстве 50% линий ВЛ 110 кВ ДЗО ПАО «Россети» может быть получена экономия не менее 580 млн рублей в год



Разработка опоры ВЛ 220 кВ из высокопрочной и атмосферостойкой сталей уголкового профиля

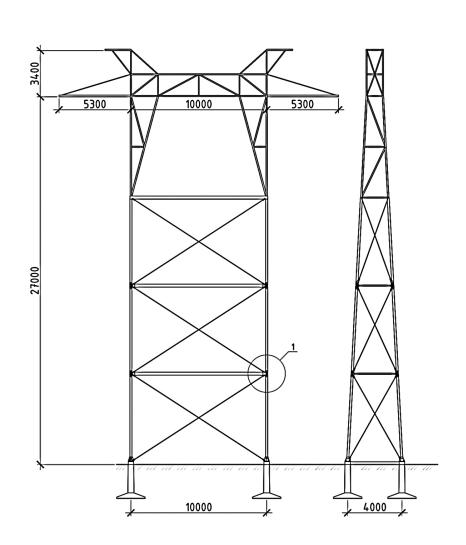
типовая, инв. № 3080тм-т.6

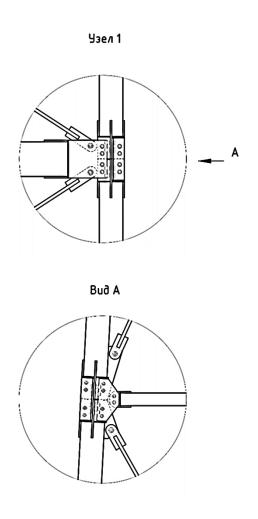
 $\Pi 220-2M$

с модернизированной решёткой

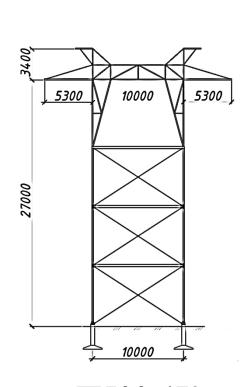
Сравнительный анализ опор П220-2 и П220-2М

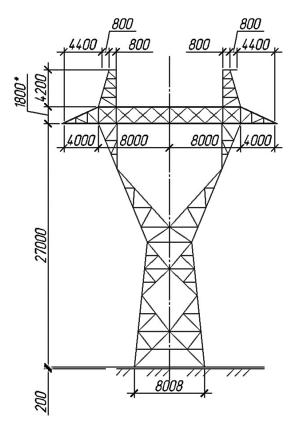
Maj	ока опоры		П220-2		П220-2М	
Hop	омы для расчёта	ПУЭ-5 (6) по действующим нормам – ПУЭ-7			УЭ-7	
Геог	метрия решётки	типовая модернизирован		ированная		
Ста	ль	Ст3	C245	C390	C390	атмосферо- стойкая С345
cca	стальные уголки, кг	5242	5000	4746	4466	4526
Macca	изменение массы, %	_	-4,6%	-9,5%	-16,7%	-15,5%
	стальных уголков	262	250	254	239	260
Стоимость, тыс. руб.	изготовления металлоконструкций	105	100	95	89	91
Стои	горячей оцинковки	123	118	112	105	не требуется
	итоговая	490	468	460	433	351
Изменение стоимости, тыс.руб.		_	-23	-30	-57	-140
Изменение стоимости, %		_	-4,6%	-6,1%	-11,6%	-28,4%



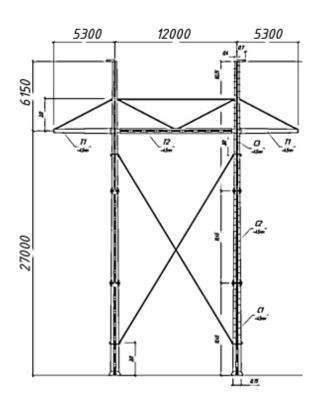

Технико-экономическое обоснование разработки опор ВЛ 220 кВ из уголкового профиля

- 1. Модифицированная опора из стали С390 легче типовой опоры **на 17%.** За счёт этого ее стоимость ниже **на 12%**
- 2. Модифицированная опора из атмосферостойкой стали С345 (14ХГНДЦ) легче типовой опоры **на 15,5%**, при этом отсутствуют затраты на горячее цинкование. За счёт этого их стоимость ниже **на 28%**
- 3. Стали С345 и С390 имеют сопоставимый эффект по изменению массы, поэтому унифицированную серию опор ВЛ целесообразно разрабатывать из стали С345 в ощинкованном или атмосферостойком исполнении
- 4. Применение модифицированных опор из сталей уголкового профиля позволяет сэкономить до 378 тыс. руб. на 1 км ВЛ 220 кВ


Разработка опоры ВЛ 500 кВ из высокопрочной и атмосферостойкой сталей квадратного профиля



Промежуточные опоры ВЛ 500 кВ



П500-1К

из квадратного профиля инв. № 3539тм-т.2

P-2

2MII500-5B

инв. № 20033тм-т.1

Сравнительный анализ опор ВЛ 500 кВ

Марка опоры		П500-1К	P-2	2МП500-5В	
Профиль		квадрат	уголок	многогранник	
Сталь		14ХГНДЦ	Ст3	C345	
сталь, кг изменение массы, %		9400	11473	9675	
Ma	изменение массы, %	_	+22%	+3%	
Стоимость, тыс. руб.	металлоконструкций с изготовлением	869	803	1077	
тыс. руб.	горячей оцинковки	не требуется	270	227	
CI	итоговая	869	1073	1304	
Измен	ение стоимости, %	_	+23%	+50%	
Тип фундамента		4 × Ф4	4 × Ф4	2 сваи L=7 м Ø 0,72 м	
Стоим.,	фундаментов	180	180	433	
CTO TBIC.	земляных работ	210	210	30	
Общая стоимость, тыс. руб.		1259	1463	1767	
Измен	ение стоимости, тыс. руб.	_	+204	+508	
Изменение стоимости, %		_	+16%	+40%	

Технико-экономическое обоснование разработки опор ВЛ 500 кВ **из квадратного профиля**

- 1. Опора из квадратного профиля сопоставима по массе с многогранной опорой и легче опоры из уголкового профиля на 22%
- 2. Стоимость вновь разработанной опоры **В 2 раза** ниже по сравнению с многогранной и **Па 23%** ниже стоимости решетчатой опоры из уголкового профиля
- 3. С учетом стоимости фундаментов и земляных работ, выгода от применения опор из квадратного профиля составляет **ше менее 204 тыс. руб.** на опору
- 4. Применение опор из квадратного профиля позволяет сократить стоимость 1 км ВЛ 500 кВ на 550 778 тыс. руб.

Экономическая эффективность разработки новых опор ВЛ

Напряжение ВЛ	Профиль стали	Экономия на 1 км ВЛ, руб.
110 vaD	уголковый	335 000
110 кВ	квадратный	450 000 - 1 100 000
220 κΒ	уголковый	378 000
500 κB	квадратный	778 000

Для массового внедрения новых опор в энергетическое строительство необходима разработка унифицированной серии опор ВЛ 110-500 кВ из высокопрочных и атмосферостойких сталей уголкового и квадратного профилей

Сочетание уголкового и квадратного профиля в конструкциях

