

Оценка технического состояния железобетонных опор магистральных электрических сетей

ОАО «Фирма ОРГРЭС»

Каверина Рамзия Султановна

(495) 993 - 00 - 17 8(916)114 - 58 - 81

KaverinaRS@mail.ru

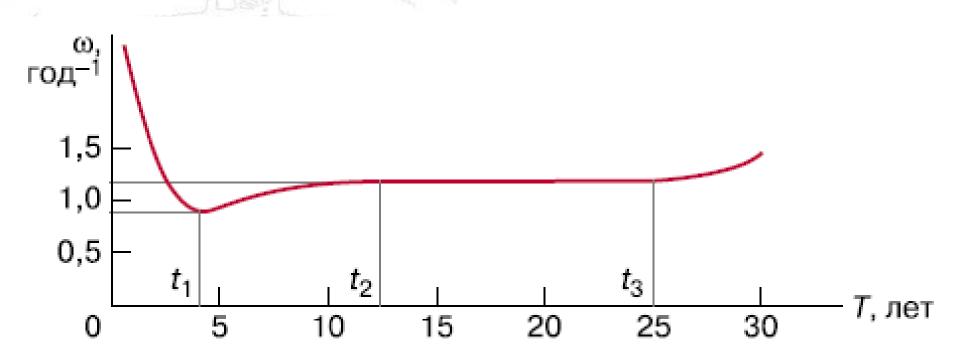
В России первые железобетонные опоры разработаны в 50-е годы прошлого столетия и первая «П» образная промежуточная железобетонная опора для ВЛ 110 кВ «Броцены-Вентспилс» испытана в 1957 году на испытательном полигоне Фирмы ОРГРЭС.

Испытания железобетонных стоек и опор для ВЛ 0,4 – 750 кВ проводились до 1993 года и было проведено 208 испытаний, которые возобновились через 18 лет в 2011 году.

Протяженность ВЛ 35 – 500 кВ составляет около 500 тыс. км, из них на опорах:

- металлических 25%;
- железобетонных 57% (≈289 тыс. км);
- деревянных 18%.

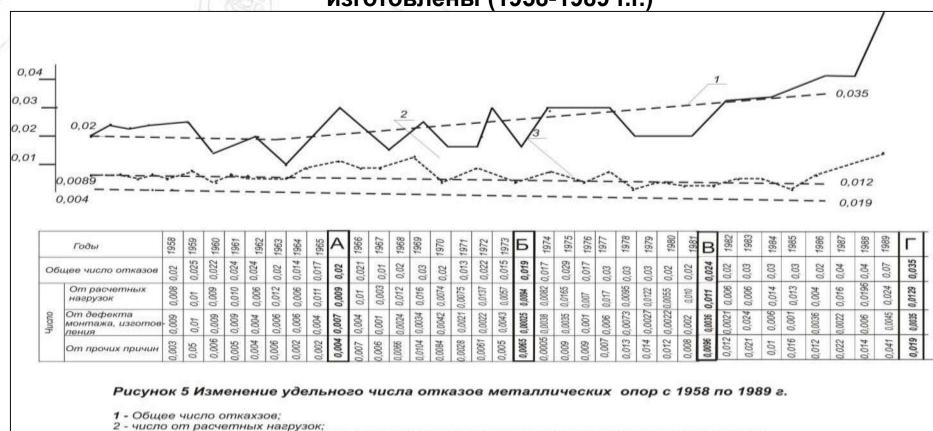
	11.0%					S Comments	
Класс напряж ения кВ	Всего	Одноцепные ВЛ на опорах			Двухцепные ВЛ на опорах		
	трассе тыс. км	Металлич еских	Железо - бетонн ых	Деревянн ых	Металлич еских	Железо- бетонны х	Деревян ных
500	30,0	26,0	4,0	7 -	101		-
330	9,0	3,5	4,7	-0-	0,7	0,1	-
220	74,0	26,2	29,6	2,8	13,8	1,6	-
110	203,0	16,3	89,3	36,5	24,4	36,5	-
35	184,0	5,6	111,2	51,2	3,7	11,0	† -
Всего	500,0	77,6	239,8	90,8	42,6	49,2	910 P.C.25
/W OFOR	7/ 1952-105		We Werning	P. P.		Cars Child March	DEDS


Из опыта эксплуатации ВЛ следует, что распределение отказов в зависимости от вида опор выглядит таким образом:

Причина отказов	Распределение отказов в зависимости от вида опор, %					
	Металлические (25%)	Железобетонные (57%)	Деревянные (18%)			
1. Воздействие сверх расчетных ветровых и гололедных нагрузок	47,0	46,5	57,2			
2.Качество изготовления, строительства и монтажа	9,2	35,5	1,5			
3.Качество эксплуатации	26,9	18,0	41,0			
4.Разбор конструкций посторонними лицами (вандализм)	16,9		0,3			

Из таблицы видно, что число отказов у железобетонных опор выше, чем у металлических в следующих случаях:

- Воздействие сверхрасчетных ветровых и гололедных нагрузок, за счет того, что несущая способность последних сильно зависит от качества заделки их в грунте. Часто железобетонные опоры под действием внешних нагрузок приобретают крен при котором из-за большого веса изгибающий момент увеличивается почти в 2 раза. В настоящее время, используя фланцевые соединения и новую буровую технику, позволяющую пробурить бурку до 8 м и более появилась возможность создать прочную заделку железобетонных опор, т.е. заглубить фундаменты больше, чем на 3300 мм, как было у существующих ж/б опор.
- Скрытые дефекты. К таким дефектам, в первую очередь, следует отнести обрывы арматуры, отклонения от проектного армирования, несоответствие классов бетона и стали расчетным, пустоты и раковины в теле бетона, которые выявляются в течение 5 лет эксплуатации. Устранение этих причин отказов достигается повышенным контролем качества изготовления железобетонных опор на заводе-изготовителе.

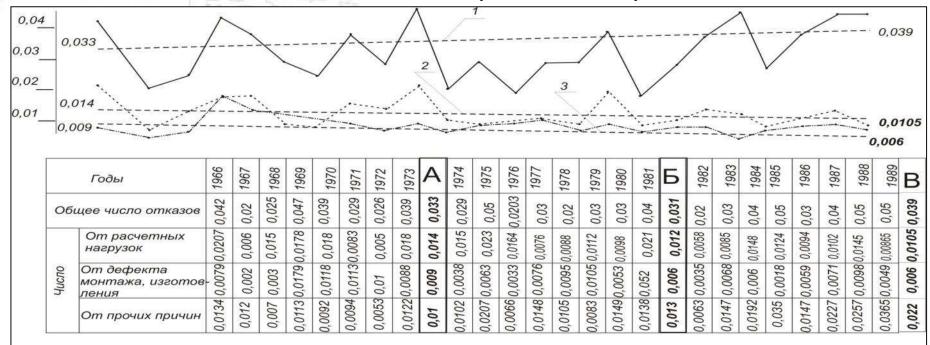


Изменение потока отказов во времени для элементов ВЛ

Надежность опор в зависимости от материала, из которого они изготовлены (1958-1989 г.г.)

Изменение удельного числа отказов металлических опор ВЛ (1958-1989 г.г.)

А, Б, В и Г - средние значения показателей соответственно на 1958- 1965 , 1966 - 1973 и 1974 - 1981 и 1982 - 1989 г. г


число от дефектов изготовления и монтажа (прочие причины отказов: недостатки эксплуатации,

изменение свойств материала, наезды транспорта, ледоход, наводнения, оползни);

Надежность опор в зависимости от материала, из которого они изготовлены (1966-1989 г.г.)

Рисунок 4 Изменение удельного числа отказов железобетонных опор с 1966 по 1989 г.

Изменение удельного числа отказов железобетонных опор ВЛ (1966-1989 г.г.)

^{1 -} Общее число откахзов;

^{2 -} число от расчетных нагрузок;

^{3 -} число от дефектов изготовления и монтажа (прочие причины откахзов: недостатки эксплуатации, изменение свойств материала, наезды транспорта, ледоход, наводнения, оползни);

А, Б и В - средние значения показателей соответственно на 1966 - 1973 , 1974 - 1981 и 1982 - 1989 г.г.

Наличие трещин в стойках железобетонных опор редко сказывается на надежность, так как процесс коррозии арматуры еще не достиг критического значения. Судя по опыту применения железобетонных опор в Калининградской области (начало применения 1932 год) где влияние коррозии арматуры началось сказываться после 60 и более лет эксплуатации. Но наличие трещин снижает прочность бетона.

Указанные недостатки снижают надежность железобетонных опор по сравнению с металлическими опорами в основном в начальной стадии эксплуатации, а из-за большого их срока службы в конечном итоге увеличивает их надежность. Мнение о недостаточной надежности железобетонных опор не подтверждается статистическими данными.

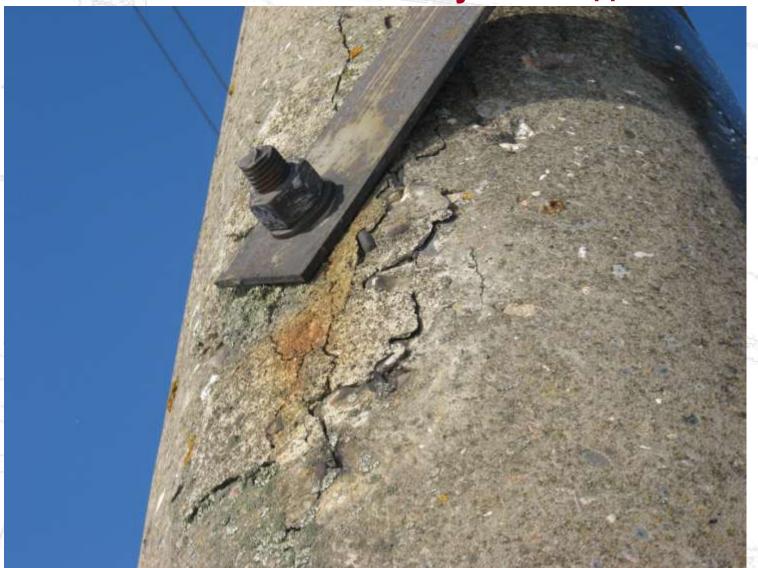
Железобетонные опоры Результаты диагностики

ВЛ 500 кВ. Растрескивание стойки из-за отсутствия стока в стакане

Железобетонные опоры Результаты диагностики

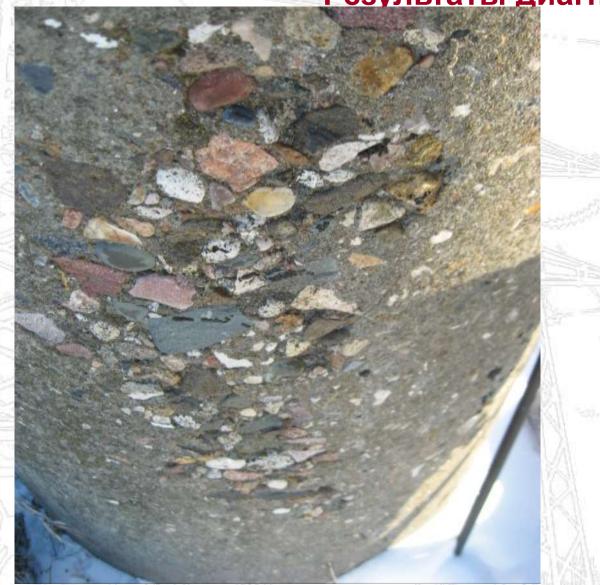
Сколы по технологическим швам с оголением и коррозией арматуры

Разрушение бетона от наезда автотехники



Растрескивание в заделке из-за заполнения полости стойки водой

Железобетонные опоры Результаты диагностики



Сколы у закладных для крепления внутренних связей

Железобетонные опоры Результаты диагностики

Нарушение технологии приготовления бетонной смеси

Результаты диагностики

Коррозия арматуры

ВЛ 110 кВ «ПС 830 Красногорская-ПС110 Рублево», ВЛ 330 кВ «Лиски-Валуйки», опора П330-1, Опора ПБ 110-8, 1951 г.

Железобетонные опоры Результаты диагностики

Одним из способов усиления заделки является применение ригелей. При установке ригелей без заглубления они не выполняют своих функций, а нередко и сами разрушаются от воздействия внешних факторов: при расчистке снега или обработке земли

Критерии оценки дефектов

Возможный дефект	Допустимые значения параметров	Метод контроля	Регламентирующий стандарт
Поперечные трещины по всей поверхности бетона стойки с арматурой из высокопрочной проволоки	Не допускаются	Визуальная фиксация. Измерение микроскопом Бринелля.	РД 34.20.504-94 РД 34.45-51.300-97
Ширина раскрытия продольных трещин в бетоне при их количестве в одном сечении более двух на длине 3 м, мм	0,3	Измерение микроскопом Бринелля.	РД 34.45-51.300-97
Коррозия арматурного каркаса ΔF ,% $\Delta F = [(F_{проект} - F_{\phi a \kappa \tau})/F_{проект}] \times 100 \le 10 **$	10	Визуально	РД 34.20.504-94
Отклонения стоек опор вдоль и поперек ВЛ от вертикальной оси , мм	H/30	Измерение геодезическими приборами или лазерным сканированием	МТ 701.000.071-86 РД 34.45-51.300-97
Отклонение оси траверсы портальной опоры с оттяжками от горизонтальной оси при длине траверсы L, мм: До 15 м Более 15 м	L/150 L/250	Измерение геодезическими приборами и лазерным сканированием	РД 34.45-51.300-97
Прогибы элементов, мм: - траверсы: - стойки:	L/300 H/700	Измерение геодезическими приборами, металлической линейкой, рулеткой	РД 34.45-51.300-97
Площадь сквозного отверстия в бетоне стойки, см ²	25	Визуально и мерительным инструментом	РД 34.20.504-94 РД 34.45-51.300-97
Прочность бетона, кгс/см ²	500	Ультразвуковая дефектоскопия по ГОСТ 17624-87 «Бетоны. Ультразвуковой метод определения прочности». Прибор «Пульсар – 1.2»п. 9.2.	РД 34.20.504-94 РД 34.45-51.300-97

	Aug. 7	23W			
Наименование ВЛ	Напряжен ие, кВ	Год ввода	Тип опор	Характер дефектов	% стоек с дефектами
«ПС Новоотрадная» -«ПС Подбельская» - «ПС Михайловская»		1958	ПБ-110-6	Трещины по технологическим швам со сколами по всей высоте, вода в стойках, сниженная прочность бетона	90
«Целинная- Восточная»	220	1974/86	ПБ 220 ПБ220-1	Продольные и поперечные трещ., отклонения в заделках	90
«Кинель- Уральская»	220	1965	ПБ-15	Растрескивание в опорном узле из-за заиливания стойки	50
«Балашовская 500 – Хопер»	220	1966	П-220	Продольные трещины и сколы, отслоение бетона, коррозия арматуры	25
«Мценск-Орловская Районная»	220	1964	ПБ-15	Прогибы стоек, сколы по технологическим швам, трещины и отслоение бетона, сквозные отверстия	100
«Узловая – Железногорск»	220	1970	ПСБ220-1	Недостаточный защитный слой, трещины по технологическим швам	36 (25% стоек имеют неустранимые дефекты)
«Литейная- Брянская»	220	До 1972	ПБ220-3	Сколы по технологическим швам, трещины и отслоение бетона, скопление воды в полостях	57
«Ямская-Рязанская ГРЭС»	220	1973	ПБ220-1	Сколы по технологическим швам с оголением арматуры до сквозных отверстий, отклонения от оси	95 (30% стоек имеют неустранимые дефекты)

Наименование ВЛ	Напряжен ие, кВ	Год ввода	Тип опор	Характер дефектов	% стоек с дефектами
«ПС Новоотрадная» -«ПС Подбельская» - «ПС Михайловская»	110	1958	ПБ-110-6	Трещины по технологическим швам со сколами по всей высоте, вода в стойках, сниженная прочность бетона	90
«Целинная- Восточная»	220	1974/86	ПБ 220 ПБ220-1	Продольные и поперечные трещ., отклонения в заделках	90
«Кинель- Уральская»	220	1965	ПБ-15	Растрескивание в опорном узле из-за заиливания стойки	50 Bu
«Балашовская 500 — Хопер»	220	1966	П-220	Продольные трещины и сколы, отслоение бетона, коррозия арматуры	25
«Мценск-Орловская Районная»	220	1964	ПБ-15	Прогибы стоек, сколы по технологическим швам, трещины и отслоение бетона, сквозные отверстия	100
«Узловая – Железногорск»	220	1970	ПСБ220-1	Недостаточный защитный слой, трещины по технологическим швам	36 (25% стоек имеют неустранимые дефекты)
«Литейная- Брянская»	220-	До 1972	ПБ220-3	Сколы по технологическим швам, трещины и отслоение бетона, скопление воды в полостях	57
«Ямская-Рязанская ГРЭС»	220	1973	ПБ220-1	Сколы по технологическим швам с оголением арматуры до сквозных отверстий, отклонения от оси	95 (30% стоек имеют неустранимые дефекты)

Наименован ие ВЛ	Напряж ение, кВ	Год ввода	Тип опор	Характер дефектов	% стоек с дефектами
«Черепеть- Литейная»	220	1959/6 6/72	ПБ220	Глубокие и протяженные трещины и сколы с обрывами витков спирали, сквозные отверстия, скопление воды в полостях, отклонения от вертикали	66
«Черепеть- Электрон»	220	1962/7	ПБ220	Низкая прочность бетона. Сколы по технологическим швам, трещины и отслоение бетона с коррозией арматуры.	43 (50% стоек имеют неустранимые дефекты)
«Электрон - Дорогобужска я»	220	1962/7	ПБ220	Сколы по технологическим швам, трещины и отслоение бетона с коррозией арматуры. Скопление воды в полостях	67
«Тамбовская- 2»	220	1970/7	П-220	Наклоны из-за отсутствия ригелей, трещины по технологическим швам. Низкая прочность бетона	100 (30% стоек имеют неустранимые дефекты)
«Костромская ГРЭС – Кострома 2»	220	1964/7	ПБД22 0-1	Отклонения от вертикали, трещины по технологическим швам	78
«Костромская ГРЭС – Мотордеталь 2»	220	1976	ПБД22 0-1	Трещины и сколы с оголением арматуры по технологическим швам	85

www.orgres-f.ru

OPI P3C

Железобетонные фундаменты

ВЛ 500 кВ «ПС 500 кВ Пахра – ТЭЦ-26», 1977-1987 г.г.

Фундаменты

ВЛ 500 кВ «Барнаульская -Рубцовская», ВЛ 220 кВ «Давыдовская-Тамбовская, 1983 г. 1977 г.

ВЛ 500 кВ «БАЭС-Ключики»,1986 г.

Фундаменты

ВЛ 220 кВ«Заря», опора П220-1, Архэнерго. (авария 2008 г.)

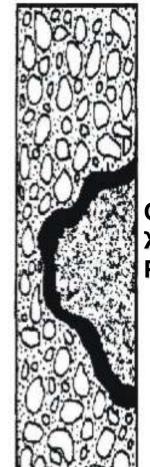
СПЕЦИАЛЬНЫЕ СОСТАВЫ

СОСТАВЫ НА ОСНОВЕ ИСКУССТВЕННЫХ СМОЛ

ЦЕМЕНТОПОЛИМЕРНЫЕ СОСТАВЫ

БЕЗУСАДОЧНЫЕ СОСТАВЫ НА ЦЕМЕНТНОЙ ОСНОВЕ

ВЫСОКАЯ МОРОЗОСТОЙКОСТЬ И ВОДОНЕПРОНИЦАЕМОСТЬ (более F300, W12)

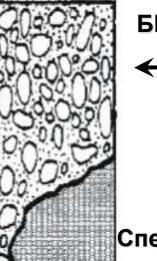


БЕТОН

 \leftarrow

неполная заливка

ОБЫЧНЫЙ ЖЕСТКИЙ РАСТВОР



БЕТОН

усадка

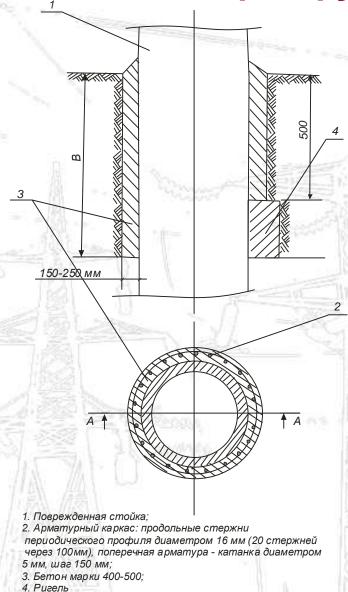
ОБЫЧНЫЙ ЖИДКИЙ РАСТВОР

БЕТОН

Специальный состав

в)

Ремонт составами СТРИМ:


- Силокор грунт
- Ремстри 50
- Стримсмесь

(ВЛ 500 кВ Михайлов-Чагино)

OPFP3C

Ремонт железобетонных стоек бандажом

выводы

- 1. Долговечность железобетонных опор в первую очередь зависит от качества их изготовления. Обычно их срок службы составляет не менее 50 70 лет, но можно достичь и 90 лет. Мнение о недостаточной надежности железобетонных опор не подтверждается статистическими данными.
- 2. Перечень основных дефектов железобетонных опор и фундаментов это продольные и поперечные трещины по стойке, прогибы стоек, сколы по технологическим швам, отслоение бетона, сквозные отверстия.
- 3. Железобетонные опоры с дефектами, приведенными выше, составляют от 20 до 100% от общего их количества.
- 4. Процесс коррозии арматуры не достиг критического значения, при котором железобетонные стойки подлежат замене. В настоящее время существуют современные высокоэффективные материалы и технологии ремонта и повышения несущей способности железобетонных опор.
 - 5. Разработка методики (способов) реабилитации железобетонных опор и фундаментов на действующих ВЛ в настоящее время является первоочередной задачей.