

ФЕДЕРАЛЬНЫЙ ИСПЫТАТЕЛЬНЫЙ ЦЕНТР

Опоры и фундаменты для умных сетей: инновации в проектировании и строительстве

Перспективы применения опор из композитных материалов для строительства ВЛ напряжением 0,4 кВ и 6-20 кВ

Россия, Санкт-Петербург www.ftc-energo.ru

Докладчик: Дёмин Алексей Васильевич

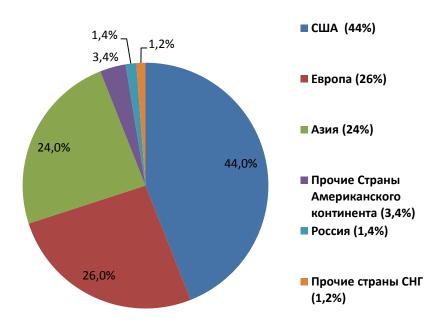
Миссия

Новые решения при сооружении (реконструкции) воздушных линий электропередачи (ВЛ) с применением опор из композитных материалов.

Основания для разработки и внедрения опор из композитных материалов

- о Распоряжение Правительства Российской Федерации от 24.07.2013 № 1307-р «Об утверждении плана мероприятий («дорожной карты») «Развитие отрасли производства композитных материалов».
- о «Программа внедрения композиционных материалов, конструкций и изделий из них в топливно-энергетическом комплексе» утвержденная Приказом Министерства энергетики Российской Федерации от 22 июля 2013 г. № 382.
- о Распоряжение ОАО «Россети» «О внедрении инновационной электротехнической продукции с применением композитных материалов» № 177р от 28.04.2014.
- Дорожная карта реализации проекта по созданию завода по производству опор из композитных материалов, в рамках реализации Соглашения о сотрудничестве ОАО «Россети» и Правительства Чеченской Республики в области организации производства на территории Чеченской Республики современного электротехнического оборудования для нужд электросетевого комплекса РФ, утвержденной Первым Заместителем генерального директора по технической политике ОАО «Россети» Р.Н. Бердниковым и Министром промышленности и энергетики Чеченской Республики Г.С. Таймасхановым 11 февраля 2014 г.

Решаемые задачи

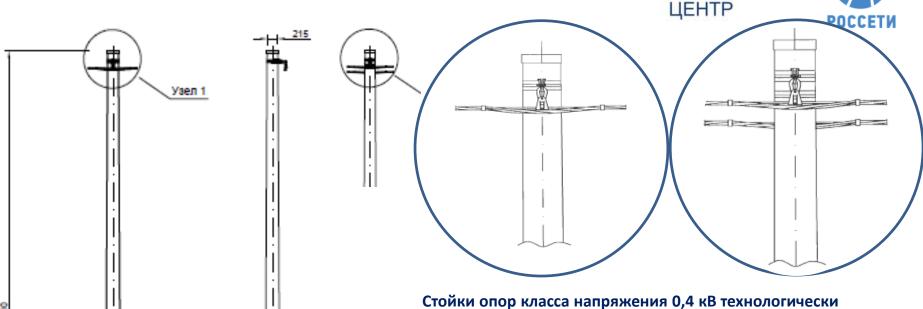

- ✓ Сокращение сроков и стоимости сооружений ВЛ, повышение надёжности эксплуатации, сокращение эксплуатационных затрат.
- ✓ Опоры из композитных материалов на ВЛ нового поколения должны соответствовать самым высоким требованиям по надежности, безопасности, экологичности и эстетичности, при высокой универсальности конструктивных решений, при меньших эксплуатационных затратах.

Интегральная структура мирового потребления композитных пластиков

Производство стоек опор из композитных материалов для воздушных линий электропередачи началось сравнительно недавно (10-15 лет). На сегодняшний день производителей композитных стоек не более десятка (без учета производителей опор уличного освещения).

В Европе основными потребителями являются Германия и Австрия – более 30%, Италия – более 20%, Франция – около 18%.

- В России данной темой занимаются как государственные учреждения, в частности МВТУ имени Баумана и СПбГПУ, так и коммерческие организации:
- группа компаний ООО "ВКЭС" (г.Санкт-Петербург;
- группа компаний «Машспецстрой» (г. Пермь);
- 3АО «Феникс-88» (г. Новосибирск);
- ООО «Гален» (г. Чебоксары);
- 3AO «Алтик» (г. Бийск);
- ОАО «Экспериментальный завод высоковольтного оборудования» (г. Москва).



Бизнес-направление	Объем потребности ДЗО ОАО «Россети» на период до 2018 гг. для восстановления ВЛ после аварии (ремкомплект); для реконструкции действующих ВЛ; для строительства новых ВЛ			
ОПОРЫ ИЗ КОМПОЗИТНЫХ МАТЕРИАЛОВ ДЛЯ ВЛ 0,4 – 35 кВ	Средний объем Композитные опоры производства, шт. / год		Стоимость продаж (без НДС), тыс. руб.	
	0,4 κΒ	29 000	615 000	
	6 - 20 кВ	20 000	592 000	
	35 кВ	850	116 000	

Для ВЛ 0,4- 220 кВ объем потребности 8500 т/год, при планируемой средней стоимости - 200 тыс. руб./т (без НДС).

Перспективные рынки - электрические сети нефтегазовой отрасли

Эскизы композитных опор для ВЛ 0,4 кВ

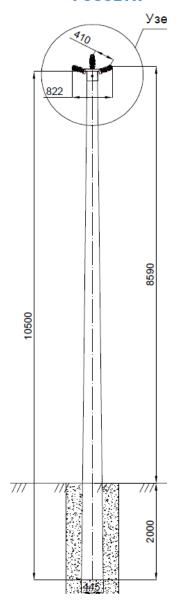
предлагается выполнять с использованием одной (или однотипной) секции, определяющей следующие размеры:

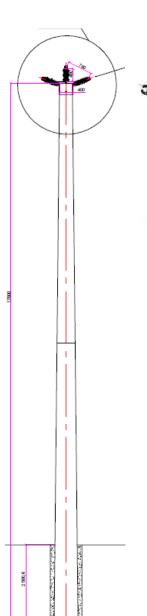
ФЕДЕРАЛЬНЫЙ ИСПЫТАТЕЛЬНЫЙ

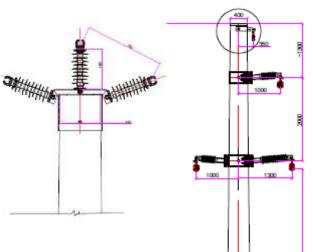
- длина секции— 9500 мм;
- диаметр части— 408 мм;
- диаметр верхней части- 199 мм.

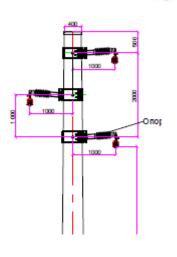
Из данной секции можно выполнить стойки длиной 9500 мм и с различной толщиной стенки, например:

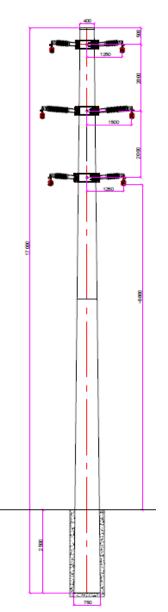
- стойка с размерами: низ Ø408/Ø424 мм; верх - \emptyset 199/ \emptyset 215 мм; толщина стенки - 8 мм;
- стойка с размерами: низ Ø408/Ø432 мм; верх - \emptyset 199/ \emptyset 223 мм; толщина стенки 12 мм;
- стойка с размерами: низ Ø408/Ø438 мм; верх - \emptyset 199/ \emptyset 229 мм; толщина стенки 15 мм;











Стойка опоры номинальной высоты 17 м выполняется из двух секций, например, нижняя секция предположительно выполняется высотой 10,5 м, верхняя секция высотой 7,5 м, вложенность секций – 1000 мм.

Стойка опоры номинальной высоты 22 м выполняется из трёх секций, например, нижняя секция предположительно выполняется высотой 10,5 м, средняя секция высотой 7,5 м, а верхняя секция высотой 5,8 м, вложенность секций – 1000 мм (нижняя) и 800 мм (верхняя) вложенность.

Стойки опоры закрепляются в грунт на 2,5 м, или на 3 м – в зависимости от исполнения эскиза.

Капитальные затраты

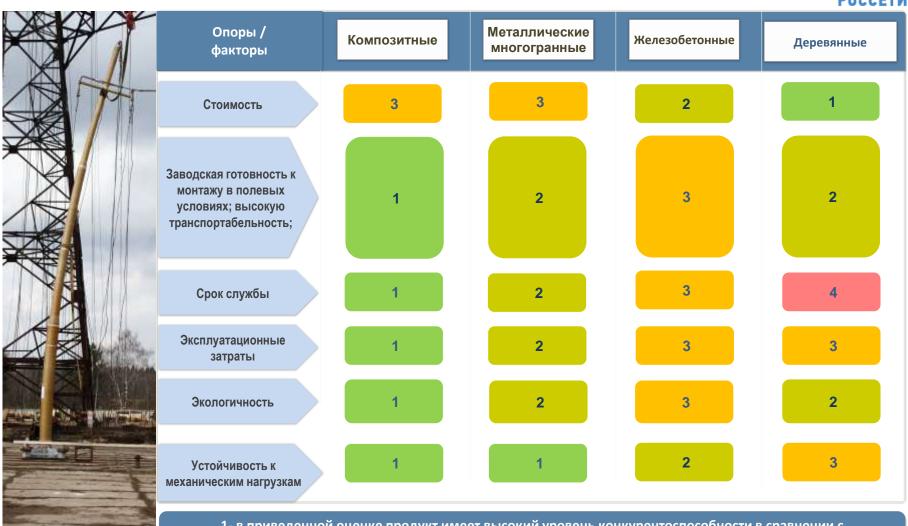
Показатели		Одноцепная промежуточная опора 6-10 кВ			
		Композит*	Деревянная	ЖБ	
			стойка-С9.5 -1,2,3	на стойке CB110- 5	Металл
		ФБСА611.00.000 -01	П10-3д	П10 ми3	Многогранная СМ10П
Масса стойки опоры (при модули упругости, 35 ГПа)	КГ	157,45	210	1 125	369
Объем стойки	куб.м.	0,085	0,42	0,45	0,041
Стоимость стойки опоры	Руб.	29 443	4 819	10 325	42 000** - 65 0000 (с фундаментом)
Стоимость доставки с приобъектного склада в текущих ценах	Руб./км	1 411	2 079	16 188	28
Стоимость доставки с центрального склада до приобъектного в текущих ценах	Руб./шт.	400	218	1 200	400
Габаритный пролет	M	81	60	85	75
Кол-во опор на 1 км	Шт.	12	17	12	13
Итого	Руб./км	359 127	86 618	154 488	549 209 - 848 209

^{*} по данным ЗАО «Феникс»

^{**} по данным ООО «Электропоставка» на 25.05.2016 г.

Капитальные затраты

Показатели		Одноцепная промежуточная опора 35 кВ			
		На композитных опорах*	На решетчатых опорах	На метал. опорах из гнутого профиля	На ЖБ опорах
		KO1-35	П35-1	ПС35ПИ-1М	
Масса стойки опоры (при модули упругости, 35 ГПа)	КГ	1 375	1 558	1 546	4 834
Объем стойки	куб.м.				
Стоимость стойки опоры	Руб.	257 125	102 828	185 500**	63 569
Стоимость фундамента	Руб.		17 700	200000	
Габаритный пролет	М	280	280	263	250
Кол-во опор на 1 км	Шт.	3,57	3,57	3,8	4,0
Стоимость монтажа в текущих ценах	Руб./ опору	20 675	125 895	23 247	20 000
Итого	Руб./км	991 746	879 730	1 553 238	334 276


^{*} по данным ЗАО «Феникс»

^{**} Сопоставима по стоимости с многогранными опорами (например, ПМ35-4 - 191 880,00 руб. 1476 кг.).

Факторы конкурентноспособности опор

1- в приведенной оценке продукт имеет высокий уровень конкурентоспособности в сравнении с существующими, 4 - низкий

1

К основным достоинствам композитных опор относят следующие:

- ▶Высокая степень заводской готовности к монтажу в полевых условиях;
- ▶Модули быстро доставляются в необходимой комплектации на стройплощадку, без длинномерного транспорта;
- ➤ Опоры из композитных материалов, учитывая их весовые характеристики, могут быть перенесены и смонтированы практически вручную в труднодоступных местах прохождения ВЛ, что делает их незаменимыми при аварийно-восстановительных работах;
- Устойчивость к повышенным механическим нагрузкам. Они не ломаются и не падают, а просто пружинят, что на порядок повышает надежность работы ВЛ в условиях гололедообразования и сверхрасчетных ветровых нагрузок и снижает риск каскадного развития аварии;
- ▶Повышенный срок службы (70-80 лет). Опоры практически не подвержены коррозии, стойкие к воздействию солей и кислот;
- ➤ Меньшие эксплуатационные затраты. Стоимость опор компенсируется низкими затратами на обслуживание;
- ▶Экологичность материала конструкции. Материал не выделяет опасные вещества. Окраска в любой цвет обеспечивает эстетику их применения в конкретных условиях градостроительной архитектуры;
- Использование композитных траверс позволяет уменьшить горизонтальные габариты применяемых стоек и увеличить длину пролетов.

К недостаткам опор из композитных материалов следует отнести следующее:

□Главным ограничителем потребительского спроса на опоры ВЛ с применением комплектующих из композитных материалов является относительно высокая цена, которая в зависимости от типа и технологии изготовления измеряется от 1,1 до 25 \$/кг. Однако есть предпосылки, что цена может со временем быть понижена за счет разработки более дешевой технологии.

□ Одной из важнейших задач, связанных с массовым внедрением опор из композитных материалов, является решение вопроса стабилизации связующего полимерного наполнителя к действию солнечного излучения.

□Одна из особенностей конструкций на основе композитных материалов – их высокая эластичность, однако для высоких опор данная особенность может быть расценена как негативная.

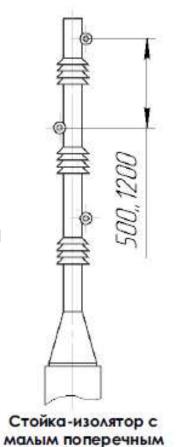
Вышеперечисленные факторы определяют первоочередную географию установок композитных опор, которые имеются на сегодняшний день:

- ▶труднодоступные места с высокой стоимостью доставки, СМР, обслуживания.
- ▶особо тяжелые условия эксплуатации: агрессивные атмосфера, грунты, солевые туманы; часто повторяющиеся экстремальные обледенение (снегопады, ураганы).
- ➤Композитные опоры могут быть использованы в тех областях, в которых надежность является определяющей

Следует отметить отсутствие на сегодняшний день разработанного нормативнотехнического обеспечения для широкомасштабного внедрения композитных опор ВЛ 0,4-35 кВ:

- ✓ норм технологического проектирования ВЛ с применением композитных опор;
- ✓ единых норм и расценок на строительно-монтажные работы;
- ✓ технологических карт производства работ.

💸 Опытно-промышленная эксплуатация опор 6-10 кВ



Габаритная высота опоры, м	9,85 - 16,3
Диаметр основания, мм	342
Число секций стойки, шт	3
Размеры в транспортной упаковке (диаметр * длина), мм	355 * 5000
Масса опоры (с траверсой и изоляторами), кг	225-245

КОМПОЗИТНАЯ ПРОМЕЖУТОЧНАЯ ОПОРА «АЛТИК» типа ПК-10-1 на участке ВЛ 10 кВ «Татнефть-Энергосервис» в г. Альметьевск

> Перспективная разработка композитной стойки 6-20 кВ

габаритом (проект)

- **❖Композитные опоры могут быть использованы в тех областях**, в которых надежность является определяющей.
- **❖**Относительно высокая стоимость опор из композитных материалов со временем, благодаря совершенствованию технологий может быть значительно снижена.
- **❖**Инвестиционная привлекательность опор ВЛ из композитных материалов будет возрастать с ростом стоимости металлов.
- ❖Применение композитных опор модульного типа с изолирующими траверсами на сегодняшний день дает наибольший эффект при использовании их в качестве ремонтного резерва или при применении в районах с особыми условиями. Транспортировка в компактном виде, быстрый монтаж, отсутствие проблем коррозии, экономия металла – это их наиболее очевидные преимущества.
- **❖**Вопросы проектирования и строительства ВЛ с применением композитных опор должны быть поддержаны разработкой соответствующей нормативнотехнической документацией.

Спасибо за внимание!

ПАО «ФИЦ» Россия, Санкт-Петербург 191036, Невский пр., 111/3 +7 (812) 431-99-70

info@ftc-energo.ru www.ftc-energo.ru

