

САНКТ - ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

МЕЖДУНАРОДНЫЙ СТРОИТЕЛЬНЫЙ ФОРУМ «АРКТИКА»

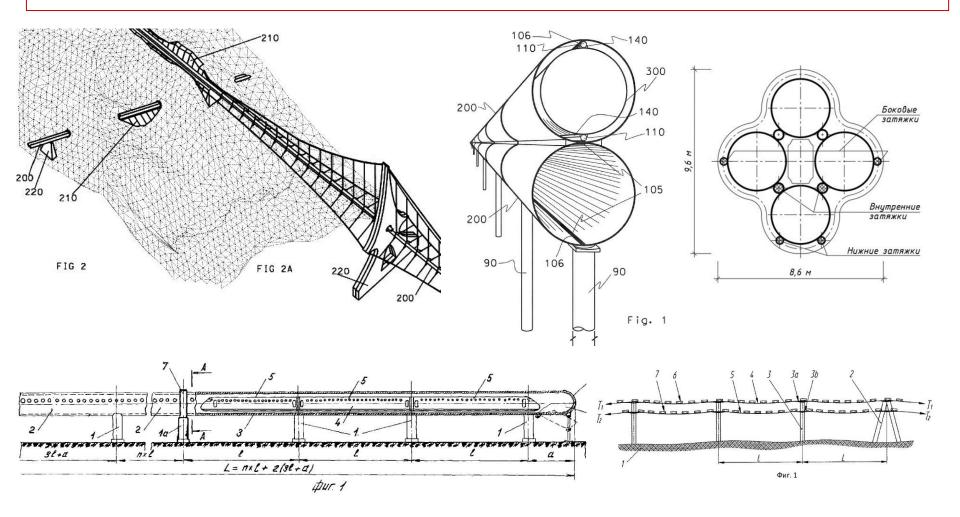
Москва, 5-7 октября 2022 г.

Конструктивно-технические предложения по Транспортно-энергетической магистрали «Усть-Луга — Берингов Пролив»

Constructive and technical proposals for the Transport and Energy Highway "Ust-Luga – Bering Strait"

Кафедра металлических и деревянных конструкций

Сенькин Н.А., к.т.н., доцент (<u>senkin1952@yandex.ru</u>)
Васильев В.С., Андреев Д.М., Большихшапок И.С., студенты СПбГАСУ
Докладчик: Васильев Валерий Сергеевич (<u>valera-vasilev-99@mail.ru</u>)

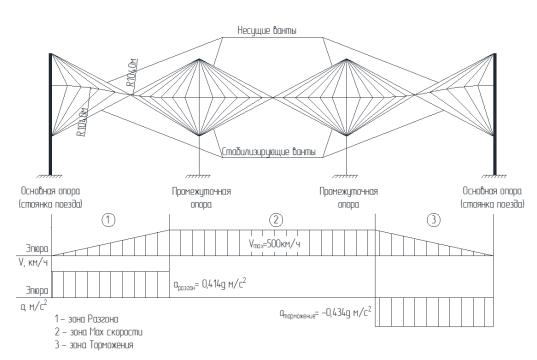

Санкт-Петербург - 2022

1. ВВЕДЕНИЕ

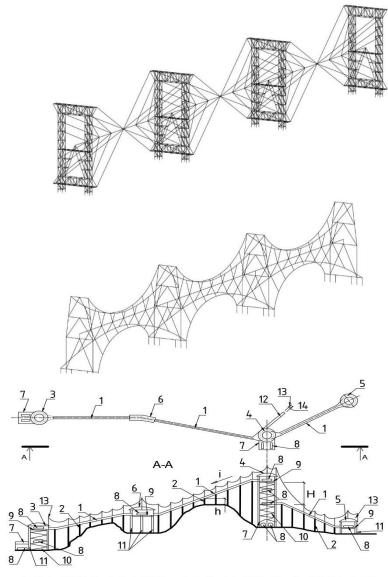
С 2016 года в Санкт-Петербургском государственном архитектурностроительном университете (СПбГАСУ) на уровне студенческих научных исследований выполняется разработка конструктивно-технологических предложений по переводу рельсовых транспортных систем на высокоскоростную схему со скоростями до 1000 км/ч. В этих работах участвовали и участвуют магистранты 2016-2018 годов кафедры городского хозяйства Бондарева Е.О., Меркулова М.В., Медведев Н.Е., Яковлев В.В., а также магистранты и дипломники 2019-2022 годов кафедры металлических конструкций и деревянных конструкций Харитонов К.Е., Филимонов А.С., Бернацкая К.В., Халимбеков И.М., Митровска Дона, Кравец А.И., Андреев Д.М., Васильев В.С., Большихшапок И.С., выполнившие магистерские и бакалаврские диссертации по комплексной теме «Инновационные предложения по реконструкции транспортной системы Санкт-Петербурга с переводом на высокоскоростную схему». Предложена схема высокоскоростной арктической транспортно-энергетической магистрали (BCATЭM) протяженностью 9683 км.

Основные пути ВСАТЭМ размещены в путепроводе в виде четырёхтрубной стальной балки, каждая труба которой организована по технологии ЕТТ (Evacuated Tube Transportation) с внутренним давлением 0,1 атмосферного, более экономичной нежели у Илона Маска (0,001). Движение пассажирских составов или грузовых модулей осуществляется на магнито-левитационной подушке при помощи линейного тягового двигателя (технология Маглев). При этом рельсовая основа шириной колеи 1520 мм устроена на всём протяжении пути, как на стоянках, зонах разгона и торможения, так на основных высокоскоростных участках для движения с максимальной скоростью до 1000 км в час.

2. Конструктивные решения транспортной магистрали с системой ETT (Evacuated Tube Transport, IL.Mask)

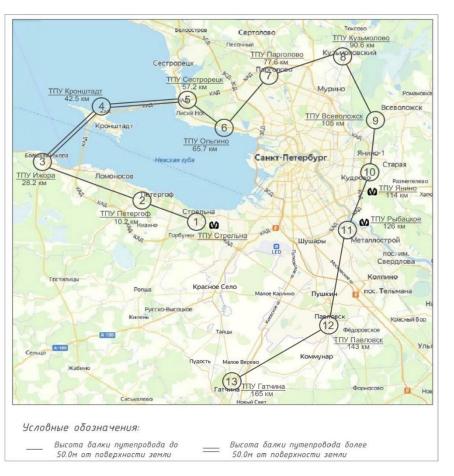


Рисунки (патенты, авторы) слева направо:

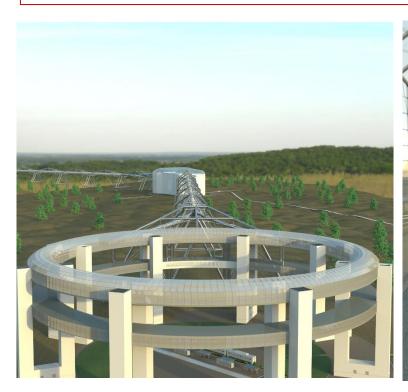

верхний ряд: US005950543A Daril G.Oster; US2014/0261054 Daril G.Oster

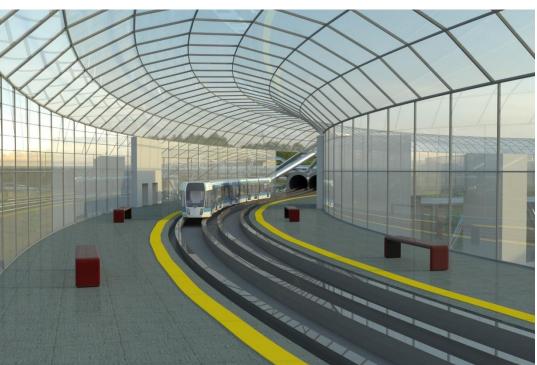
нижний ряд: RU2258617 Янсуфин Нигматулла Рахматуллович; RU2475386 Юницкий Анатолий Эдуардович

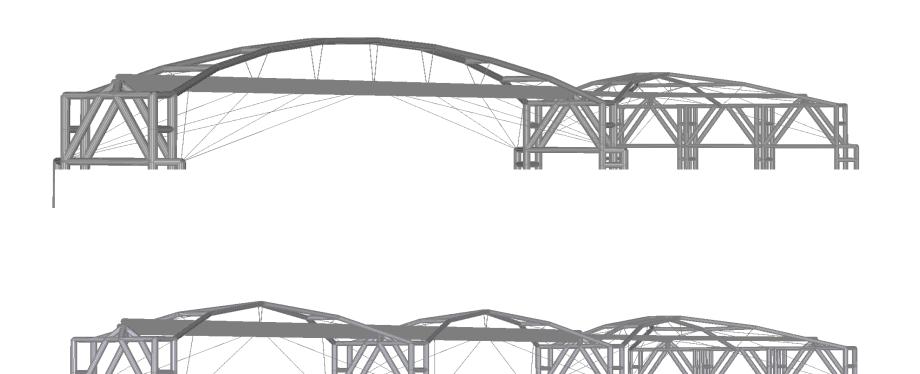
3. Вантово-стержневые системы (суперпролеты)



Эпюры скоростей и ускорений для варианта скорости 500 км/ч. Основные конструктивные вантово-стержневые варианты: с наклонными вантами и с подвесками


1 — Путепровод, 2 — Эстакада, 3 — Эдание транспортно—пересадочного уэла (вариант 1), 4 — Эдание транспортно—пересадочного уэла (вариант 2), 5 — Эдание транспортно—пересадочного уэла (вариант 3), 6 — Эдание транспортно—пересадочного уэла (вариант 4), 7 — Эдание дело, 8 — Состав из транспортных модулей, 9 — Перрон для посадки и высадки пассажиров, 10 — Спиральный пандус, 11 — Опорные колонны эдания ТТУ с лестницами и лифтами, 12 — Ответвление путепровод, 13 — Воэдщиная личия электропередачи, 14 — Кабельная личия электропередачи, 14 — Кабельная личия электропередачи


4. Предлагаемая схема Высокоскоростной транспортной магистрали на границах связи Санкт-Петербурга и Ленинградской области (ВСТМ)


Участок Длина, км	
ТПУ «Стрельна» - ТПУ «Петергоф»	10,2
ТПУ «Петергоф» - ТПУ «Ижора»	18,0
ТПУ «Ижора» - ТПУ «Кронштадт»	14,3
ТПУ «Кронштадт» - ТПУ «Сестрорецк	>>
14,7	
ТПУ «Сестрорецк» - ТПУ «Ольгино»	8,5
ТПУ «Ольгино» - ТПУ «Парголово»	11,9
ТПУ «Парголово» - ТПУ «Кузьмолово	>>
12,9	
ТПУ «Кузьмолово» - ТПУ «Всеволжск	()
14,4	
ТПУ «Всеволжск» - ТПУ «Янино»	9,0
ТПУ «Янино» - ТПУ «Рыбацкое»	12,0
ТПУ «Рыбацкое» - ТПУ «Павловск»	17,0
ТПУ «Павловск» - ТПУ «Гатчина»	22,0
Общая протяженность: 165,0	

5. Транспортно-пересадочный узел ТПУ «Татьянино» (Гатчина) — разворотное кольцо: визуализация. Далее виден ТПУ «Павловск»

6. Конструктивные варианты магистрали на подходах к ТПУ, выполняемые хребтовыми арками пролетами 180 и 360 метров

7. Сравнение арочно-вантовых вариантов на подходе к ТПУ

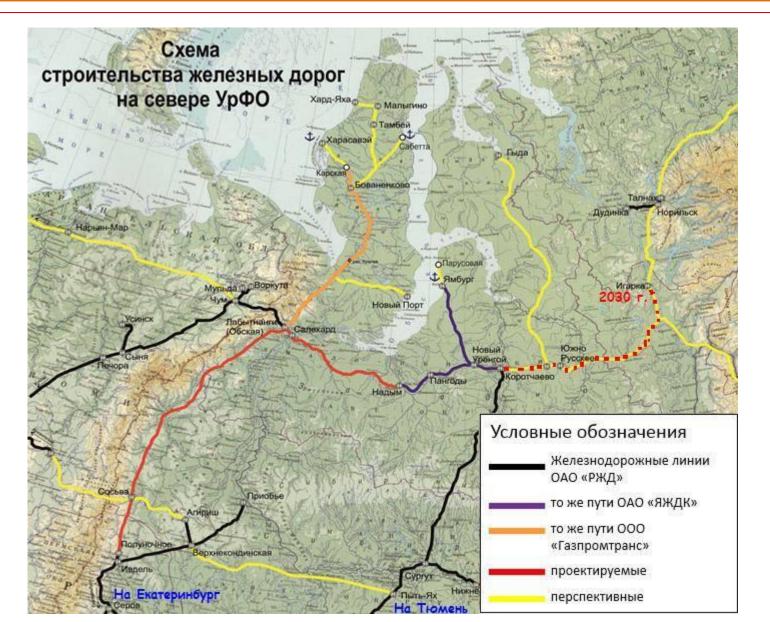
	_	Сравнительный анализ по двум вариантам арок 180 и 360 метров			
Элементы	Ед. изм.	2×180 м	360 м		
Вантовые элементы	т	11,252	37,585		
Пилоны (сталь)	т	273,061	272,345		
Пилоны (бетон)	M ³	1643,63	3287,27		
Арка	Т	1837,4	2773,55		
Путепровод	т	2657,65	2657,65		
09Г2С	т	4779,362	5741,13		
Металлоёмкость	т/м	13,3	15,9		

8. Два модельных эксперимента с конструкциями ВСТМ

1 – Исследование предварительно-напряженных элементов в ВСАТЭМ

2 – Исследование конструктивной и расчетных схем каркаса здания ТПУ с кольцевым пандусом

9. Предложения по созданию скоростных магистралей в Арктической зоне: конструкции и технологии

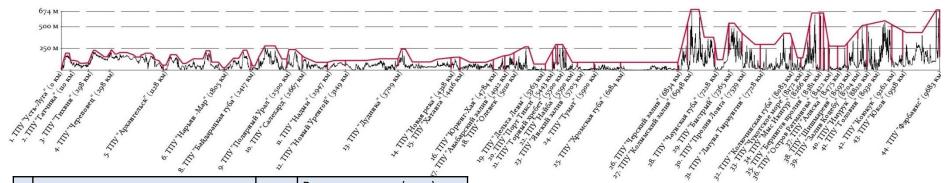

Трансконтинентальная магистраль через Берингов пролив как самый грандиозный проект за всю историю человечества!

По данным Википедии, Царь Николай Александрович II в 1905 году одобрил предложение о строительстве Сибирско-Аляскинской железной дороги от мыса Принца Уэльского на Аляске в Иркутск через туннель под Беринговым проливом через Верхнеколымск и Якутск. Но с началом Русской революции 1905 года, а затем Первой Мировой войны, проект был отменен.

В 2007 году 24 апреля в Москве состоялась Международная конференция «Трансконтинентальная Магистраль Евразия — Америка через Берингов пролив», которая определила необходимость формирования единой глобальной сухопутной транспортной сети с целью обеспечения связи транспортных и энергетических систем Евразии и Америки. Предложено построить около 6 тыс. км железных дорог от Якутска до ближайшего узла североамериканской сети железных дорог через Магадан, Чукотку, Берингов пролив и Аляску в едином коридоре с линиями электропередачи и оптоволоконной связи. Техническая осуществимость такого проекта сегодня не вызывает сомнений у международного сообщества (Журнал «Forum International», №7, 2007).

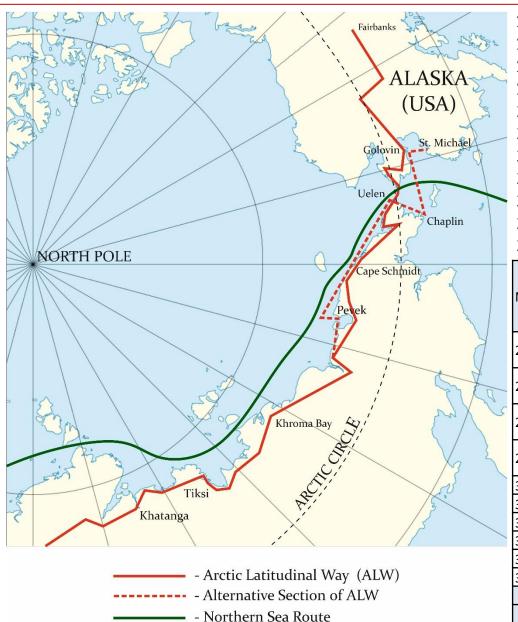

В марте 2015 года Президент РАН В.Е. Фортов (1946-2020) передал главе государства В. В. Путину четыре больших масштабных проекта, нацеленных на глобальное развитие, включая предложению по строительству скоростной железной дороги через Сибирь с выходом к Берингову проливу. Это проект «Развитие», проект очень дорогой, но позволяющий решить многие проблемы по развитию огромного региона, тянет за собой и социалку, и новые месторождения, и новые энергетические ресурсы».

10. Предложения по созданию скоростных магистралей в Арктической зоне: конструкции и технологии (Северный широтный ход – Минтранс, РЖД)



11. Предложения по скоростным магистралям: СТМ на Шпицберген (1350 км), Северный морской путь (2500 миль – 4630 км, 10,6 суток), Арктический широтный ход (ВСТМ (9683 км): Усть-Луга – о.Ратманова – 8422км, о.Ратманова- Fairbanks – 1261 км)

PROPOSALS FOR THE CONSTRUCTION OF THE HIGH-SPEED LINES IN THE ARCTIC ZONE


12. Предложения по созданию скоростных магистралей в Арктической зоне: Арктический Полярный Ход (профиль, рельеф, продолжительность)

			Время проезда (мин) при			
Nº	Участок	Длина	максимальной скорости			
INE		(ĸм)		(км/ч)		
			160	500	1000	
1	Усть-Луга - Гатчина	110	43.62	15.72	9.16	
2	Гатчина - Тихвин	188	72.87	25.08	13.84	
3	Тихвин - Череповец	239	92.00	31.20	16.90	
4	Череповец - Архангельск	591	224.00	73.44	38.02	
5	Архангельск - Нарьян-Мар	677	256.25	83.76	43.18	
6	Нарьян-Мар - МореЮ	296	113.37	38.04	20.32	
7	МореЮ - Байдарацкая Губа	316	120.87	40.44	21.52	
8	Байдарацкая Губа - Полярный Урал	83	33.50	12.48	7.54	
9	Полярный Урал - Салехард	167	65.00	22.56	12.58	
10	Салехард - Надым	280	107.37	36.12	19.36	
11	Надым - Новый Уренгой	202	78.12	26.76	14.68	
12	Новый Уренгой - Дудинка	560	212.37	69.72	36.16	
13	Дудинка - Новая Река	609	230.75	75.60	39.10	
14	Новая Река - Хатанга	98	39.12	14.28	8.44	
15	Хатанга - Юрюнг-Хая	368	140.37	46.68	24.64	
16	Юрюнг-Хая - Анабарский Залив	128	50.37	17.88	10.24	
17	Анабарский Залив - Оленек	98	39.12	14.28	8.44	
18	Оленек - Дельта Лены	353	134.75	44.88	23.74	
19	Дельта Лены - Порт Тикси	80	32.37	12.12	7.36	
20	Порт Тикси - Горный Хребет	57	23.77	9.37	5.98	
21	Горный Хребет - Найба	90	36.14	13.33	7.96	

	\$` \$' \$'	20,00.			
22	Найба - Янский Залив	115	45.52	16.33	9.46
23	Янский Залив - Тумат	195	75.52	25.93	14.26
24	Тумат - Хромская Губа	284	108.89	36.61	19.60
25	Хромская Губа - Черский	650	246.14	80.53	41.56
26	Черский - Колымский Залив	114	45.14	16.21	9.40
27	Колымский Залив - Чаунская Губа	280	107.39	36.13	19.36
28	Чаунская Губа - Быстрый	137	53.77	18.97	10.78
29	Быстрый - Пролив Лонга	174	67.64	23.41	13.00
30	Пролив Лонга - Лагуна Тыркунгин	189	73.27	25.21	13.90
31	Лагуна Тыркунгин - Количинская Губа	355	135.52	45.13	23.86
32	Количинская Губа - Чукотское Море	89	35.77	13.21	7.90
33	Чукотское Море - Мыс Икигур	94	37.64	13.81	8.20
34	Мыс Икигур - Беренгов Пролив	115	45.52	16.33	9.46
35	Беренгов Пролив - Остров Ратманова	41	17.77	7.45	5.02
36	Остров Ратманова - Alaska	53	22.27	8.89	5.74
37	Alaska - Shishmarev	118	46.64	16.69	9.64
38	Shishmarev - Kotzebue Sound	111	44.02	15.85	9.22
39	Kotzebue Sound - Imruk	116	45.89	16.45	9.52
40	Imruk - Golovin	110	43.64	15.73	9.16
41	Golovin - Koyukuk	332	126.89	42.37	22.48
42	Koyukuk - Yukon	256	98.39	33.25	17.92
43	Yukon - Fairbanks	165	64.27	22.33	12.46
	итого:	9683	3734.04	1270.8	691.212
	ИТОГО (в часах):		62.23	21.18	11.52

13. Альтернативный морской участок АШХ

- 26 ТПУ «Черский залив» (6834 км).
- 27 ТПУ «Колымский залив» (6948 км)
- 28' ТПУ «Певек» (7269 км)
- 29' ТПУ «Восточно-Сибирское море» (7319 км)
- 30' ТПУ «Биллингс» (7545 км)
- 31' ТПУ «Мыс Шмидта» (7754 км)
- 32' ТПУ «Уэлен» (8263 км)
- 33' ТПУ «Чаплин» (8490 км)
- 34' ТПУ «Nome» (8838 км)
- 35' ТПУ «Golovin» (8935 км)
- 36' ТПУ «St. Michael» (9062 км)

Nº	Участок	Длина (км)	Время проезда (мин) при максимальной скорости (км/ч)			
			160	500	1000	
26	Черский - Колымский Залив	114	45.12	16.20	9.40	
27	Колымский Залив - Певек	321	122.75	41.04	21.82	
28	Певек – Восточно- Сибирское море	50	21.12	8.52	5.56	
29	Восточно-Сибирское море – Биллингс	226	87.12	29.64	16.12	
30	Биллингс – Мыс Шмидта	209	80.75	27.60	15.10	
31	Мыс Шмидта - Уэлен	509	193.25	63.60	33.10	
32	Уэлен - Чаплин	227	87.50	29.76	16.18	
33	Чаплин - Nome	348	132.87	44.28	23.44	
34	Nome - Golovin	97	38.75	14.16	8.38	
35	Golovin – St. Michael	127	50.00	17.76	10.18	
	итого:	9062	3481	1175.78	633.317	
	ИТОГО (в часах):		58.02	19.60	10.56	

14. ВЫВОДЫ И ПРЕДЛОЖЕНИЯ

- 1. При проектировании глобальной транспортной сети данные исследования подтверждают возможность использования технологии ETT (Evacuated Tube Transportation), а также магнитной левитации (технология Маглев), для Арктической скоростной транспортной магистрали (АСТМ).
- 2. По предварительным технико-экономическим показателям продолжительность доставки грузов по ABM по сравнению с СМП сокращается в 5,4 раза, но при этом протяженность проектируемой скоростной магистрали почти в 1,6 раза выше в связи с необходимостью обхода высоких горных массивов.
- 3. Рассмотрены подводные трубные магистрали, которые имеют длинные прямолинейные участки длиной более 1000 км с минимизацией количества транспортно-пересадочных узлов.
- 4. Трансконтинентальная магистраль через Берингов пролив в целях обеспечения связи транспортных и энергетических систем Евразии и Америки представляется как самый грандиозный проект за всю историю человечества, сопоставимый с освоением космоса!

СПАСИБО ЗА ВНИМАНИЕ! Благодарю студентов-магистрантов СПбГАСУ Андреева Дмитрия Максимовича, Большихшапок Ивана Сергеевича, а так же научного руководителя Николая Александровича Сенькина за великолепную работу при подготовке данного доклада!